Picone’s identity for a Finsler -Laplacian and comparison of nonlinear elliptic equations
Mathematica Bohemica (2014)
- Volume: 139, Issue: 3, page 535-552
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topJaroš, Jaroslav. "Picone’s identity for a Finsler $p$-Laplacian and comparison of nonlinear elliptic equations." Mathematica Bohemica 139.3 (2014): 535-552. <http://eudml.org/doc/261992>.
@article{Jaroš2014,
abstract = {In the paper we present an identity of the Picone type for a class of nonlinear differential operators of the second order involving an arbitrary norm $H$ in $\mathbb \{R\}^n$ which is continuously differentiable for $x \ne 0$ and such that $H^p$ is strictly convex for some $p > 1$. Two important special cases are the $p$-Laplacian and the so-called pseudo $p$-Laplacian. The identity is then used to establish a variety of comparison results concerning nonlinear degenerate elliptic equations which involve such operators. We also get criteria for the nonexistence of positive solutions in exterior domains for such equations by means of comparison with the equation exhibiting a kind of “anisotropic radial symmetry”.},
author = {Jaroš, Jaroslav},
journal = {Mathematica Bohemica},
keywords = {Picone identity; Finsler $p$-Laplacian; Picone identity; Finsler $p$-Laplacian},
language = {eng},
number = {3},
pages = {535-552},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Picone’s identity for a Finsler $p$-Laplacian and comparison of nonlinear elliptic equations},
url = {http://eudml.org/doc/261992},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Jaroš, Jaroslav
TI - Picone’s identity for a Finsler $p$-Laplacian and comparison of nonlinear elliptic equations
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 3
SP - 535
EP - 552
AB - In the paper we present an identity of the Picone type for a class of nonlinear differential operators of the second order involving an arbitrary norm $H$ in $\mathbb {R}^n$ which is continuously differentiable for $x \ne 0$ and such that $H^p$ is strictly convex for some $p > 1$. Two important special cases are the $p$-Laplacian and the so-called pseudo $p$-Laplacian. The identity is then used to establish a variety of comparison results concerning nonlinear degenerate elliptic equations which involve such operators. We also get criteria for the nonexistence of positive solutions in exterior domains for such equations by means of comparison with the equation exhibiting a kind of “anisotropic radial symmetry”.
LA - eng
KW - Picone identity; Finsler $p$-Laplacian; Picone identity; Finsler $p$-Laplacian
UR - http://eudml.org/doc/261992
ER -
References
top- Allegretto, W., Huang, Y. X., A Picone’s identity for the -Laplacian and applications, Nonlinear Anal., Theory Methods Appl. 32 819-830 (1998). (1998) Zbl0930.35053MR1618334
- Alvino, A., Ferone, V., Trombetti, G., Lions, P.-L., 10.1016/S0294-1449(97)80147-3, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 14 275-293 (1997). (1997) Zbl0877.35040MR1441395DOI10.1016/S0294-1449(97)80147-3
- Bellettini, G., Paolini, M., 10.14492/hokmj/1351516749, Hokkaido Math. J. 25 537-566 (1996). (1996) Zbl0873.53011MR1416006DOI10.14492/hokmj/1351516749
- Belloni, M., Ferone, V., Kawohl, B., 10.1007/s00033-003-3209-y, Z. Angew. Math. Phys. 54 771-783 (2003). (2003) Zbl1099.35509MR2019179DOI10.1007/s00033-003-3209-y
- Berestycki, H., Capuzzo-Dolcetta, I., Nirenberg, L., 10.1007/BF01210623, NoDEA, Nonlinear Differ. Equ. Appl. 2 553-572 (1995). (1995) Zbl0840.35035MR1356874DOI10.1007/BF01210623
- Bognár, G., Došlý, O., The application of Picone-type identity for some nonlinear elliptic differential equations, Acta Math. Univ. Comen., New Ser. 72 45-57 (2003). (2003) Zbl1106.35013MR2020577
- Cianchi, A., Salani, P., 10.1007/s00208-009-0386-9, Math. Ann. 345 859-881 (2009). (2009) Zbl1179.35107MR2545870DOI10.1007/s00208-009-0386-9
- Pietra, F. Della, Gavitone, N., 10.1016/j.jmaa.2012.08.008, J. Math. Anal. Appl. 397 800-813 (2013). (2013) MR2979615DOI10.1016/j.jmaa.2012.08.008
- Došlý, O., The Picone identity for a class of partial differential equations, Math. Bohem. 127 581-589 (2002). (2002) Zbl1074.35521MR1942643
- Došlý, O., Maří{k}, R., 10.1023/A:1006739909182, Acta Math. Hung. 90 89-107 (2001). (2001) Zbl1062.35022MR1910321DOI10.1023/A:1006739909182
- Došlý, O., Řehák, P., Half-Linear Differential Equations, North-Holland Mathematics Studies 202 Elsevier, Amsterdam (2005). (2005) Zbl1090.34001MR2158903
- Dunninger, D. R., A Sturm comparison theorem for some degenerate quasilinear elliptic operators, Boll. Unione Mat. Ital., VII. Ser., A 9 117-121 (1995). (1995) Zbl0834.35011MR1324611
- Ferone, V., Kawohl, B., 10.1090/S0002-9939-08-09554-3, Proc. Am. Math. Soc. 137 247-253 (2009). (2009) Zbl1161.35017MR2439447DOI10.1090/S0002-9939-08-09554-3
- Kusano, T., Jaroš, J., Yoshida, N., 10.1016/S0362-546X(00)85023-3, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 40 381-395 (2000). (2000) Zbl0954.35018MR1768900DOI10.1016/S0362-546X(00)85023-3
- Kusano, T., Naito, Y., 10.1007/BF02907054, Acta Math. Hung. 76 81-99 (1997). (1997) Zbl0906.34024MR1459772DOI10.1007/BF02907054
- Kusano, T., Naito, Y., Ogata, A., Strong oscillation and nonoscillation of quasilinear differential equations of second order, Differ. Equ. Dyn. Syst. 2 1-10 (1994). (1994) MR1386034
- Picone, M., Un teorema sulle soluzioni delle equazioni lineari ellittiche autoaggiunte alle derivate parziali del secondo ordine, Rom. Acc. L. Rend. (5) 20 213-219 Italian (1911). (1911)
- Rockafellar, R. T., Convex Analysis. Reprint of the 1970 original, Princeton Landmarks in Mathematics Princeton University Press, Princeton (1997). (1997) MR1451876
- Swanson, C. A., Picone's identity, Rend. Mat., VI. Ser. 8 373-397 (1975). (1975) Zbl0327.34028MR0402188
- Swanson, C. A., Comparison and Oscillation Theory of Linear Differential Equations, Mathematics in Science and Engineering 48 Academic Press, New York (1968). (1968) Zbl0191.09904MR0463570
- Wang, G., Xia, C., 10.2140/pjm.2012.258.305, Pac. J. Math. 258 305-326 (2012). (2012) Zbl1266.35120MR2981956DOI10.2140/pjm.2012.258.305
- Wang, G., Xia, C., 10.1016/j.jde.2011.08.001, J. Differ. Equations 252 1668-1700 (2012). (2012) Zbl1233.35053MR2853556DOI10.1016/j.jde.2011.08.001
- Wang, G., Xia, C., 10.1007/s00205-010-0323-9, Arch. Ration. Mech. Anal. 199 99-115 (2011). (2011) Zbl1232.35103MR2754338DOI10.1007/s00205-010-0323-9
- Yoshida, N., Oscillation Theory of Partial Differential Equations, World Scientific, Hackensack (2008). (2008) Zbl1154.35001MR2485076
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.