Multiplicity and uniqueness for a class of discrete fractional boundary value problems
Lv Zhanmei; Gong Yanping; Chen Yi
Applications of Mathematics (2014)
- Volume: 59, Issue: 6, page 673-695
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topZhanmei, Lv, Yanping, Gong, and Yi, Chen. "Multiplicity and uniqueness for a class of discrete fractional boundary value problems." Applications of Mathematics 59.6 (2014): 673-695. <http://eudml.org/doc/261999>.
@article{Zhanmei2014,
abstract = {The paper deals with a class of discrete fractional boundary value problems. We construct the corresponding Green's function, analyse it in detail and establish several of its key properties. Then, by using the fixed point index theory, the existence of multiple positive solutions is obtained, and the uniqueness of the solution is proved by a new theorem on an ordered metric space established by M. Jleli, et al. (2012).},
author = {Zhanmei, Lv, Yanping, Gong, Yi, Chen},
journal = {Applications of Mathematics},
keywords = {fractional order; discrete fractional boundary value problem; fractional difference equation; positive solution; fractional order; discrete fractional boundary value problem; fractional difference equation; positive solution},
language = {eng},
number = {6},
pages = {673-695},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multiplicity and uniqueness for a class of discrete fractional boundary value problems},
url = {http://eudml.org/doc/261999},
volume = {59},
year = {2014},
}
TY - JOUR
AU - Zhanmei, Lv
AU - Yanping, Gong
AU - Yi, Chen
TI - Multiplicity and uniqueness for a class of discrete fractional boundary value problems
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 6
SP - 673
EP - 695
AB - The paper deals with a class of discrete fractional boundary value problems. We construct the corresponding Green's function, analyse it in detail and establish several of its key properties. Then, by using the fixed point index theory, the existence of multiple positive solutions is obtained, and the uniqueness of the solution is proved by a new theorem on an ordered metric space established by M. Jleli, et al. (2012).
LA - eng
KW - fractional order; discrete fractional boundary value problem; fractional difference equation; positive solution; fractional order; discrete fractional boundary value problem; fractional difference equation; positive solution
UR - http://eudml.org/doc/261999
ER -
References
top- Alyousef, K., Boundary Value Problems for Discrete Fractional Equations, Ph.D. dissertation, The University of Nebraska-Lincoln (2012). (2012) MR3047184
- Anastassiou, G. A., 10.1016/j.mcm.2009.11.006, Math. Comput. Modelling 51 (2010), 562-571. (2010) Zbl1190.26001MR2594707DOI10.1016/j.mcm.2009.11.006
- Atici, F. M., Eloe, P. W., A transform method in discrete fractional calculus, Int. J. Difference Equ. 2 (2007), 165-176. (2007) MR2493595
- Atici, F. M., Eloe, P. W., 10.1090/S0002-9939-08-09626-3, Proc. Am. Math. Soc. 137 (2009), 981-989. (2009) Zbl1166.39005MR2457438DOI10.1090/S0002-9939-08-09626-3
- Atici, F. M., Eloe, P. W., 10.1216/RMJ-2011-41-2-353, Rocky Mt. J. Math. 41 (2011), 353-370. (2011) Zbl1218.39003MR2794443DOI10.1216/RMJ-2011-41-2-353
- cı, F. M. Atı, Eloe, P. W., 10.1080/10236190903029241, J. Difference Equ. Appl. 17 (2011), 445-456. (2011) MR2783359DOI10.1080/10236190903029241
- cı, F. M. Atı, Eloe, P. W., 10.1016/j.camwa.2011.11.029, Comput. Math. Appl. 64 (2012), 3193-3200. (2012) MR2989347DOI10.1016/j.camwa.2011.11.029
- cı, F. M. Atı, engül, S., 10.1016/j.jmaa.2010.02.009, J. Math. Anal. Appl. 369 (2010), 1-9. (2010) MR2643839DOI10.1016/j.jmaa.2010.02.009
- Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M., Discrete-time fractional variational problems, Signal Process. 91 (2011), 513-524. (2011) Zbl1203.94022
- Deimling, K., Nonlinear Functional Analysis, Springer, New York (1985). (1985) Zbl0559.47040MR0787404
- Erbe, L. H., Hu, S. C., Wang, H. Y., 10.1006/jmaa.1994.1227, J. Math. Anal. Appl. 184 (1994), 640-648. (1994) Zbl0805.34021MR1281534DOI10.1006/jmaa.1994.1227
- Ferreira, R. A. C., 10.1016/j.camwa.2010.11.012, Comput. Math. Appl. 61 (2011), 367-373. (2011) Zbl1216.39013MR2754144DOI10.1016/j.camwa.2010.11.012
- Ferreira, R. A. C., 10.1090/S0002-9939-2012-11533-3, Proc. Am. Math. Soc. 140 (2012), 1605-1612. (2012) Zbl1243.26012MR2869144DOI10.1090/S0002-9939-2012-11533-3
- Ferreira, R. A. C., Goodrich, C. S., Positive solution for a discrete fractional periodic boundary value problem, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 19 (2012), 545-557. (2012) Zbl1268.26010MR3058228
- Goodrich, C. S., 10.1016/j.camwa.2010.03.040, Comput. Math. Appl. 59 (2010), 3489-3499. (2010) Zbl1197.39002MR2646320DOI10.1016/j.camwa.2010.03.040
- Goodrich, C. S., Solutions to a discrete right-focal fractional boundary value problem, Int. J. Difference Equ. 5 (2010), 195-216. (2010) MR2771325
- Goodrich, C. S., 10.1016/j.camwa.2010.10.041, Comput. Math. Appl. 61 (2011), 191-202. (2011) Zbl1211.39002MR2754129DOI10.1016/j.camwa.2010.10.041
- Goodrich, C. S., 10.1016/j.amc.2010.11.029, Appl. Math. Comput. 217 (2011), 4740-4753. (2011) Zbl1215.39003MR2745153DOI10.1016/j.amc.2010.11.029
- Goodrich, C. S., 10.1016/j.camwa.2011.02.039, Comput. Math. Appl. 62 (2011), 1251-1268. (2011) Zbl1253.34012MR2824712DOI10.1016/j.camwa.2011.02.039
- Goodrich, C. S., 10.2298/AADM110111001G, Appl. Anal. Discrete Math. 5 (2011), 122-132. (2011) Zbl1289.39008MR2809040DOI10.2298/AADM110111001G
- Goodrich, C. S., 10.1080/10236198.2010.503240, J. Difference Equ. Appl. 18 (2012), 397-415. (2012) Zbl1253.26010MR2901829DOI10.1080/10236198.2010.503240
- Goodrich, C. S., 10.1007/s00013-012-0463-2, Arch. Math. 99 (2012), 509-518. (2012) Zbl1263.26016MR3001554DOI10.1007/s00013-012-0463-2
- Goodrich, C. S., 10.1016/j.aml.2011.11.028, Appl. Math. Lett. 25 (2012), 1101-1105. (2012) Zbl1266.39006MR2922519DOI10.1016/j.aml.2011.11.028
- Goodrich, C. S., 10.1016/j.jmaa.2011.06.022, J. Math. Anal. Appl. 385 (2012), 111-124. (2012) Zbl1236.39008MR2832079DOI10.1016/j.jmaa.2011.06.022
- Guo, D., Lakshmikantham, V., Nonlinear Problems in Abstract Cones, Notes and reports in mathematics in science and engineering 5 Academic Press, Boston (1988). (1988) Zbl0661.47045MR0959889
- Holm, M., The Theory of Discrete Fractional Calculus: Development and Application, Ph.D. dissertation, The University of Nebraska-Lincoln (2011). (2011) MR2873503
- Jarad, F., Abdeljawad, T., Baleanu, D., Biçen, K., 10.1155/2012/476581, Abstr. Appl. Anal. 2012 (2012), Article ID 476581, 9 pages, doi:10.1155/2012/476581. (2012) Zbl1235.93206MR2889092DOI10.1155/2012/476581
- Jleli, M., Rajić, V. Č., Samet, B., Vetro, C., 10.1007/s11784-012-0081-4, J. Fixed Point Theory Appl. 12 (2012), 175-192. (2012) Zbl1266.54089MR3034859DOI10.1007/s11784-012-0081-4
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204 Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073
- Lakshmikantham, V., Leela, S., Devi, J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge (2009). (2009)
- Lv, W. D., 10.1186/1687-1847-2012-163, Adv. Difference Equ. 2012 (2012), 10 pages, doi:10.1186/1687-1847-2012-163. (2012) MR3016060DOI10.1186/1687-1847-2012-163
- Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons New York (1993). (1993) Zbl0789.26002MR1219954
- Pan, Y. Y., Han, Z. L., Sun, S., Zhao, Y., 10.1155/2012/707631, Abstr. Appl. Anal. 2012 (2012), Article ID 707631, 15 pages, doi:10.1155/2012/707631. (2012) Zbl1244.39006MR2898035DOI10.1155/2012/707631
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.