Maximal distributional chaos of weighted shift operators on Köthe sequence spaces
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 1, page 105-114
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWu, Xinxing. "Maximal distributional chaos of weighted shift operators on Köthe sequence spaces." Czechoslovak Mathematical Journal 64.1 (2014): 105-114. <http://eudml.org/doc/262001>.
@article{Wu2014,
abstract = {During the last ten some years, many research works were devoted to the chaotic behavior of the weighted shift operator on the Köthe sequence space. In this note, a sufficient condition ensuring that the weighted shift operator $B_\{w\}^\{n\}\colon \lambda _\{p\}(A)\rightarrow \lambda _\{p\}(A)$ defined on the Köthe sequence space $\lambda _\{p\}(A)$ exhibits distributional $\epsilon $-chaos for any $0< \epsilon < \mathop \{\rm diam\} \lambda _\{p\}(A)$ and any $n\in \mathbb \{N\}$ is obtained. Under this assumption, the principal measure of $B_\{w\}^\{n\}$ is equal to 1. In particular, every Devaney chaotic shift operator exhibits distributional $\epsilon $-chaos for any $0< \epsilon < \mathop \{\rm diam\} \lambda _\{p\}(A)$.},
author = {Wu, Xinxing},
journal = {Czechoslovak Mathematical Journal},
keywords = {weighted shift operator; principal measure; distributional chaos; weighted shift operator; principal measure; distributional chaos},
language = {eng},
number = {1},
pages = {105-114},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Maximal distributional chaos of weighted shift operators on Köthe sequence spaces},
url = {http://eudml.org/doc/262001},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Wu, Xinxing
TI - Maximal distributional chaos of weighted shift operators on Köthe sequence spaces
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 105
EP - 114
AB - During the last ten some years, many research works were devoted to the chaotic behavior of the weighted shift operator on the Köthe sequence space. In this note, a sufficient condition ensuring that the weighted shift operator $B_{w}^{n}\colon \lambda _{p}(A)\rightarrow \lambda _{p}(A)$ defined on the Köthe sequence space $\lambda _{p}(A)$ exhibits distributional $\epsilon $-chaos for any $0< \epsilon < \mathop {\rm diam} \lambda _{p}(A)$ and any $n\in \mathbb {N}$ is obtained. Under this assumption, the principal measure of $B_{w}^{n}$ is equal to 1. In particular, every Devaney chaotic shift operator exhibits distributional $\epsilon $-chaos for any $0< \epsilon < \mathop {\rm diam} \lambda _{p}(A)$.
LA - eng
KW - weighted shift operator; principal measure; distributional chaos; weighted shift operator; principal measure; distributional chaos
UR - http://eudml.org/doc/262001
ER -
References
top- Bermúdez, T., Bonilla, A., Martínez-Giménez, F., Peris, A., 10.1016/j.jmaa.2010.06.011, J. Math. Anal. Appl. 373 (2011), 83-93. (2011) Zbl1214.47012MR2684459DOI10.1016/j.jmaa.2010.06.011
- Duan, J., Fu, X.-C., Liu, P.-D., Manning, A., 10.1016/S0893-9659(98)00119-0, Appl. Math. Lett. 12 (1999), 15-19. (1999) Zbl0956.37057MR1663405DOI10.1016/S0893-9659(98)00119-0
- Köthe, G., Topological Vector Spaces I, Translated from German by D. J. H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band 159 Springer, New York (1969). (1969) MR0248498
- Li, T. Y., Yorke, J. A., 10.2307/2318254, Am. Math. Mon. 82 (1975), 985-992. (1975) Zbl0351.92021MR0385028DOI10.2307/2318254
- Martínez-Giménez, F., Oprocha, P., Peris, A., 10.1016/j.jmaa.2008.10.049, J. Math. Anal. Appl. 351 (2009), 607-615. (2009) Zbl1157.47008MR2473967DOI10.1016/j.jmaa.2008.10.049
- Martínez-Giménez, F., 10.1090/S0002-9939-07-08658-3, Proc. Am. Math. Soc. 135 (2007), 1741-1752. (2007) Zbl1115.47008MR2286084DOI10.1090/S0002-9939-07-08658-3
- Meise, R., Vogt, D., Introduction to Functional Analysis, Translated from the German by M. S. Ramanujan and revised by the authors. Oxford Graduate Texts Mathematics 2 The Clarendon Press, Oxford University Press, New York (1997). (1997) Zbl0924.46002MR1483073
- Oprocha, P., Wilczyński, P., 10.1016/j.chaos.2005.09.069, Chaos Solitons Fractals 31 (2007), 347-355. (2007) Zbl1140.37303MR2259760DOI10.1016/j.chaos.2005.09.069
- Pikula, R., 10.4064/cm107-2-1, Colloq. Math. 107 (2007), 167-177. (2007) Zbl1130.37327MR2284159DOI10.4064/cm107-2-1
- Schweizer, B., Smítal, J., 10.1090/S0002-9947-1994-1227094-X, Trans. Am. Math. Soc. 344 (1994), 737-754. (1994) Zbl0812.58062MR1227094DOI10.1090/S0002-9947-1994-1227094-X
- Schweizer, B., Sklar, A., Smítal, J., 10.2307/44154056, Real Anal. Exch. 26 (2000/01), 495-524. (2000) MR1844132DOI10.2307/44154056
- Smítal, J., Štefánková, M., 10.1016/j.chaos.2003.12.105, Chaos Solitons Fractals 21 (2004), 1125-1128. (2004) Zbl1060.37037MR2047330DOI10.1016/j.chaos.2003.12.105
- Wang, L., Huan, S., Huang, G., 10.1016/j.na.2006.12.048, Nonlinear Anal., Theory Methods Appl. 68 (2008), 1682-1686. (2008) Zbl1142.37309MR2388841DOI10.1016/j.na.2006.12.048
- Wu, X., Zhu, P., 10.1016/j.aml.2011.09.055, Appl. Math. Lett. 25 (2012), 545-549. (2012) Zbl1242.37009MR2856030DOI10.1016/j.aml.2011.09.055
- Wu, X., Zhu, P., The principal measure of a quantum harmonic oscillator, J. Phys. A, Math. Theor. 44 (2011), ID 505101, 6 pages. (2011) Zbl1238.81129MR2869648
- Wu, X., Zhu, P., Chaos in a class of nonconstant weighted shift operators, Int. J. Bifurcation Chaos Appl. Sci. Eng. 23 (2013), ID 1350010, 9 pages. (2013) Zbl1270.37016MR3038635
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.