On a capitulation problem over the field ( p 1 p 2 , i ) with elementary 2 -class group

Abdelmalek Azizi; Abdelkader Zekhnini; Mohammed Taous

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 1, page 11-29
  • ISSN: 0011-4642

How to cite

top

Azizi, Abdelmalek, Zekhnini, Abdelkader, and Taous, Mohammed. "Sur un problème de capitulation du corps $\mathbb {Q}(\sqrt{p_1p_2},\rm i)$ dont le $2$-groupe de classes est élémentaire." Czechoslovak Mathematical Journal 64.1 (2014): 11-29. <http://eudml.org/doc/262006>.

@article{Azizi2014,
abstract = {Soient $p_1\equiv p_2\equiv 1\hspace\{4.44443pt\}(\@mod \; 8)$ des nombres premiers tels que, $(\frac\{p_1\}\{p_2\})=-1$ et $(\frac\{2\}\{a+b\})=-1$, où $p_1p_2=a^2+b^2$. Soient $ i=\sqrt\{-1\}$, $d=p_1p_2$, $\mathbb \{k\}=\mathbb \{Q\}(\sqrt\{d\}, i)$, $\mathbb \{k\}_2^\{(1)\}$ le 2-corps de classes de Hilbert de $\mathbb \{k\}$ et $\mathbb \{k\}^\{(*)\}=\mathbb \{Q\}(\sqrt\{p_1\},\sqrt\{p_2\}, i)$ le corps de genres de $\mathbb \{k\}$. La 2-partie $ C_\{\{\mathbb \{k\}\},2\}$ du groupe de classes de $\mathbb \{k\}$ est de type $(2, 2, 2)$, par suite $\mathbb \{k\}_2^\{(1)\}$ contient sept extensions quadratiques non ramifiées $\mathbb \{K\}_j/\mathbb \{k\}$ et sept extensions biquadratiques non ramifiées $\mathbb \{L\}_j/\mathbb \{k\}$. Dans ce papier on s’intéresse à déterminer ces quatorze extensions, le groupe $ C_\{\{\mathbb \{k\}\},2\}$ et à étudier la capitulation des 2-classes d’idéaux de $\mathbb \{k\}$ dans ces extensions.},
author = {Azizi, Abdelmalek, Zekhnini, Abdelkader, Taous, Mohammed},
journal = {Czechoslovak Mathematical Journal},
keywords = {unit group; class group; Hilbert class field; genus field; capitulation of ideal; capitulation; biquadratic field; unit group; class group; Hilbert class field; genus field},
language = {fre},
number = {1},
pages = {11-29},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sur un problème de capitulation du corps $\mathbb \{Q\}(\sqrt\{p_1p_2\},\rm i)$ dont le $2$-groupe de classes est élémentaire},
url = {http://eudml.org/doc/262006},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Azizi, Abdelmalek
AU - Zekhnini, Abdelkader
AU - Taous, Mohammed
TI - Sur un problème de capitulation du corps $\mathbb {Q}(\sqrt{p_1p_2},\rm i)$ dont le $2$-groupe de classes est élémentaire
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 11
EP - 29
AB - Soient $p_1\equiv p_2\equiv 1\hspace{4.44443pt}(\@mod \; 8)$ des nombres premiers tels que, $(\frac{p_1}{p_2})=-1$ et $(\frac{2}{a+b})=-1$, où $p_1p_2=a^2+b^2$. Soient $ i=\sqrt{-1}$, $d=p_1p_2$, $\mathbb {k}=\mathbb {Q}(\sqrt{d}, i)$, $\mathbb {k}_2^{(1)}$ le 2-corps de classes de Hilbert de $\mathbb {k}$ et $\mathbb {k}^{(*)}=\mathbb {Q}(\sqrt{p_1},\sqrt{p_2}, i)$ le corps de genres de $\mathbb {k}$. La 2-partie $ C_{{\mathbb {k}},2}$ du groupe de classes de $\mathbb {k}$ est de type $(2, 2, 2)$, par suite $\mathbb {k}_2^{(1)}$ contient sept extensions quadratiques non ramifiées $\mathbb {K}_j/\mathbb {k}$ et sept extensions biquadratiques non ramifiées $\mathbb {L}_j/\mathbb {k}$. Dans ce papier on s’intéresse à déterminer ces quatorze extensions, le groupe $ C_{{\mathbb {k}},2}$ et à étudier la capitulation des 2-classes d’idéaux de $\mathbb {k}$ dans ces extensions.
LA - fre
KW - unit group; class group; Hilbert class field; genus field; capitulation of ideal; capitulation; biquadratic field; unit group; class group; Hilbert class field; genus field
UR - http://eudml.org/doc/262006
ER -

References

top
  1. Azizi, A., Units of certain imaginary abelian number fields over , French Ann. Sci. Math. Qué. 23 15-21 (1999). (1999) Zbl1041.11072MR1721726
  2. Azizi, A., Capitulation of the 2 -ideal classes of ( p 1 p 2 , i ) where p 1 and p 2 are primes such that p 1 1 ( mod 8 ) , p 2 5 ( mod 8 ) and ( p 1 p 2 ) = - 1 , Algebra and Number Theory Boulagouaz, M'hammed et al. Proceedings of a conference, Fez, Morocco. Lect. Notes Pure Appl. Math. 208 Marcel Dekker, New York 13-19 (2000). (2000) MR1724671
  3. Azizi, A., 10.2140/pjm.2003.208.1, French Pac. J. Math. 208 (2003), 1-10. (2003) Zbl1061.11065MR1979368DOI10.2140/pjm.2003.208.1
  4. Azizi, A., On the units of certain number fields of degree 8 over , Ann. Sci. Math. Qué. 29 (2005), 111-129. (2005) Zbl1188.11056MR2309703
  5. Azizi, A., Taous, M., Determination of the fields K = ( d , - 1 ) , given the 2-class groups are of type ( 2 , 4 ) or ( 2 , 2 , 2 ) , French. English summary Rend. Ist. Mat. Univ. Trieste 40 (2008), 93-116. (2008) Zbl1215.11107MR2583453
  6. Barruccand, P., Cohn, H., Note on primes of type x 2 + 32 y 2 , class number, and residuacity, J. Reine Angew. Math. 238 (1969), 67-70. (1969) MR0249396
  7. Batut, C., Belabas, K., Bernadi, D., Cohen, H., Olivier, M., GP/PARI calculator Version 2.2.6, (2003). (2003) 
  8. Heider, F. P., Schmithals, B., Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, German J. Reine Angew. Math. 336 (1982), 1-25. (1982) Zbl0505.12016MR0671319
  9. Hilbert, D., On the theory of the relative quadratic number field, Math. Ann. 51 (1899), 1-127. (1899) 
  10. Kaplan, P., Sur le 2 -groupe de classes d’idéaux des corps quadratiques, French J. Reine Angew. Math. 283/284 (1976), 313-363. (1976) MR0404206
  11. Lemmermeyer, F., Reciprocity Laws. From Euler to Eisenstein, Springer Monographs in Mathematics, Springer, Berlin (2000). (2000) Zbl0949.11002MR1761696
  12. Parry, T. M. McCall. C. J., Ranalli, R. R., 10.1006/jnth.1995.1079, J. Number Theory 53 (1995), 88-99. (1995) Zbl0831.11059MR1344833DOI10.1006/jnth.1995.1079
  13. Scholz, A., 10.1007/BF01201346, Math. Z. German 39 (1934), 95-111. (1934) DOI10.1007/BF01201346

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.