On a capitulation problem over the field $\mathbb {Q}(\sqrt {p_1p_2},\rm i)$ with elementary $2$-class group
Abdelmalek Azizi; Abdelkader Zekhnini; Mohammed Taous
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 1, page 11-29
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAzizi, Abdelmalek, Zekhnini, Abdelkader, and Taous, Mohammed. "Sur un problème de capitulation du corps $\mathbb {Q}(\sqrt {p_1p_2},\rm i)$ dont le $2$-groupe de classes est élémentaire." Czechoslovak Mathematical Journal 64.1 (2014): 11-29. <http://eudml.org/doc/262006>.
@article{Azizi2014,
abstract = {Soient $p_1\equiv p_2\equiv1\pmod8$ des nombres premiers tels que, $(\frac\{p_1\}\{p_2\})=-1$ et $(\frac2\{a+b\})=-1$, où $p_1p_2=a^2+b^2$. Soient $ i=\sqrt\{-1\}$, $d=p_1p_2$, $\Bbbk=\mathbb\{Q\}(\sqrt\{d\}, i)$, $\Bbbk_2^\{(1)\}$ le 2-corps de classes de Hilbert de $\Bbbk$ et $\Bbbk^\{(*)\}=\mathbb Q(\sqrt\{p_1\},\sqrt\{p_2\}, i)$ le corps de genres de $\Bbbk$. La 2-partie $ C_\{\{\Bbbk\},2\}$ du groupe de classes de $\Bbbk$ est de type $(2, 2, 2)$, par suite $\Bbbk_2^\{(1)\}$ contient sept extensions quadratiques non ramifiées $\mathbb K_j/\Bbbk$ et sept extensions biquadratiques non ramifiées $\mathbb\{L\}_j/\Bbbk$. Dans ce papier on s'intéresse à déterminer ces quatorze extensions, le groupe $ C_\{\{\Bbbk\},2\}$ et à étudier la capitulation des 2-classes d'idéaux de $\Bbbk$ dans ces extensions.},
author = {Azizi, Abdelmalek, Zekhnini, Abdelkader, Taous, Mohammed},
journal = {Czechoslovak Mathematical Journal},
keywords = {capitulation; biquadratic field; unit group; class group; Hilbert class field; genus field},
language = {fre},
number = {1},
pages = {11-29},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sur un problème de capitulation du corps $\mathbb \{Q\}(\sqrt \{p_1p_2\},\rm i)$ dont le $2$-groupe de classes est élémentaire},
url = {http://eudml.org/doc/262006},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Azizi, Abdelmalek
AU - Zekhnini, Abdelkader
AU - Taous, Mohammed
TI - Sur un problème de capitulation du corps $\mathbb {Q}(\sqrt {p_1p_2},\rm i)$ dont le $2$-groupe de classes est élémentaire
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 11
EP - 29
AB - Soient $p_1\equiv p_2\equiv1\pmod8$ des nombres premiers tels que, $(\frac{p_1}{p_2})=-1$ et $(\frac2{a+b})=-1$, où $p_1p_2=a^2+b^2$. Soient $ i=\sqrt{-1}$, $d=p_1p_2$, $\Bbbk=\mathbb{Q}(\sqrt{d}, i)$, $\Bbbk_2^{(1)}$ le 2-corps de classes de Hilbert de $\Bbbk$ et $\Bbbk^{(*)}=\mathbb Q(\sqrt{p_1},\sqrt{p_2}, i)$ le corps de genres de $\Bbbk$. La 2-partie $ C_{{\Bbbk},2}$ du groupe de classes de $\Bbbk$ est de type $(2, 2, 2)$, par suite $\Bbbk_2^{(1)}$ contient sept extensions quadratiques non ramifiées $\mathbb K_j/\Bbbk$ et sept extensions biquadratiques non ramifiées $\mathbb{L}_j/\Bbbk$. Dans ce papier on s'intéresse à déterminer ces quatorze extensions, le groupe $ C_{{\Bbbk},2}$ et à étudier la capitulation des 2-classes d'idéaux de $\Bbbk$ dans ces extensions.
LA - fre
KW - capitulation; biquadratic field; unit group; class group; Hilbert class field; genus field
UR - http://eudml.org/doc/262006
ER -
References
top- Azizi, A., Units of certain imaginary abelian number fields over $\Bbb Q$, French Ann. Sci. Math. Qué. 23 15-21 (1999). (1999) Zbl1041.11072MR1721726
- Azizi, A., Capitulation of the $2$-ideal classes of $\mathbb{Q}(\sqrt{p_1p_2}, \rm i )$ where $p_1$ and $p_2$ are primes such that $p_1\equiv 1 \pmod 8$, $p_2\equiv 5 \pmod 8$ and $(\frac{p_1}{p_2})=-1$, Algebra and Number Theory Boulagouaz, M'hammed et al. Proceedings of a conference, Fez, Morocco. Lect. Notes Pure Appl. Math. 208 Marcel Dekker, New York 13-19 (2000). (2000) MR1724671
- Azizi, A., 10.2140/pjm.2003.208.1, French Pac. J. Math. 208 (2003), 1-10. (2003) Zbl1061.11065MR1979368DOI10.2140/pjm.2003.208.1
- Azizi, A., On the units of certain number fields of degree 8 over $\Bbb Q$, Ann. Sci. Math. Qué. 29 (2005), 111-129. (2005) Zbl1188.11056MR2309703
- Azizi, A., Taous, M., Determination of the fields $K=\Bbb Q(\sqrt d,\sqrt{-1})$, given the 2-class groups are of type $(2,4)$ or $(2,2,2)$, French. English summary Rend. Ist. Mat. Univ. Trieste 40 (2008), 93-116. (2008) Zbl1215.11107MR2583453
- Barruccand, P., Cohn, H., Note on primes of type $x^2+32y^2$, class number, and residuacity, J. Reine Angew. Math. 238 (1969), 67-70. (1969) MR0249396
- Batut, C., Belabas, K., Bernadi, D., Cohen, H., Olivier, M., GP/PARI calculator Version 2.2.6, (2003). (2003)
- Heider, F. P., Schmithals, B., Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, German J. Reine Angew. Math. 336 (1982), 1-25. (1982) Zbl0505.12016MR0671319
- Hilbert, D., On the theory of the relative quadratic number field, Math. Ann. 51 (1899), 1-127. (1899)
- Kaplan, P., Sur le $2$-groupe de classes d'idéaux des corps quadratiques, French J. Reine Angew. Math. 283/284 (1976), 313-363. (1976) MR0404206
- Lemmermeyer, F., Reciprocity Laws. From Euler to Eisenstein, Springer Monographs in Mathematics, Springer, Berlin (2000). (2000) Zbl0949.11002MR1761696
- Parry, T. M. McCall. C. J., Ranalli, R. R., 10.1006/jnth.1995.1079, J. Number Theory 53 (1995), 88-99. (1995) Zbl0831.11059MR1344833DOI10.1006/jnth.1995.1079
- Scholz, A., 10.1007/BF01201346, Math. Z. German 39 (1934), 95-111. (1934) DOI10.1007/BF01201346
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.