Commutators of the fractional maximal function on variable exponent Lebesgue spaces
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 1, page 183-197
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhang, Pu, and Wu, Jianglong. "Commutators of the fractional maximal function on variable exponent Lebesgue spaces." Czechoslovak Mathematical Journal 64.1 (2014): 183-197. <http://eudml.org/doc/262009>.
@article{Zhang2014,
abstract = {Let $M_\{\beta \}$ be the fractional maximal function. The commutator generated by $M_\{\beta \}$ and a suitable function $b$ is defined by $[M_\{\beta \},b]f = M_\{\beta \}(bf)-bM_\{\beta \}(f)$. Denote by $\mathcal \{P\}(\mathbb \{R\}^\{n\})$ the set of all measurable functions $p(\cdot )\colon \mathbb \{R\}^\{n\}\rightarrow [1,\infty )$ such that \[ 1< p\_\{-\}:=\mathop \{\rm ess inf\}\_\{x\in \mathbb \{R\}^n\}p(x) \quad \text\{and\}\quad p\_\{+\}:=\mathop \{\rm ess sup\}\_\{x\in \mathbb \{R\}^n\}p(x)<\infty , \]
and by $\mathcal \{B\}(\mathbb \{R\}^\{n\})$ the set of all $p(\cdot ) \in \mathcal \{P\}(\mathbb \{R\}^\{n\})$ such that the Hardy-Littlewood maximal function $M$ is bounded on $L^\{p(\cdot )\}(\mathbb \{R\}^\{n\})$. In this paper, the authors give some characterizations of $b$ for which $[M_\{\beta \},b]$ is bounded from $L^\{p(\cdot )\}(\mathbb \{R\} ^\{n\})$ into $L^\{q(\cdot )\}(\mathbb \{R\}^\{n\})$, when $p(\cdot )\in \mathcal \{P\}(\mathbb \{R\}^\{n\})$, $0<\{\beta \}<n/p_\{+\}$ and $1/q(\cdot )=1/p(\cdot )-\beta /n$ with $q(\cdot )(n-\beta )/n \in \mathcal \{B\}(\mathbb \{R\}^\{n\})$.},
author = {Zhang, Pu, Wu, Jianglong},
journal = {Czechoslovak Mathematical Journal},
keywords = {commutator; BMO; fractional maximal function; variable exponent Lebesgue space; fractional maximal function; variable exponent Lebesgue space; BMO; commutator},
language = {eng},
number = {1},
pages = {183-197},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Commutators of the fractional maximal function on variable exponent Lebesgue spaces},
url = {http://eudml.org/doc/262009},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Zhang, Pu
AU - Wu, Jianglong
TI - Commutators of the fractional maximal function on variable exponent Lebesgue spaces
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 183
EP - 197
AB - Let $M_{\beta }$ be the fractional maximal function. The commutator generated by $M_{\beta }$ and a suitable function $b$ is defined by $[M_{\beta },b]f = M_{\beta }(bf)-bM_{\beta }(f)$. Denote by $\mathcal {P}(\mathbb {R}^{n})$ the set of all measurable functions $p(\cdot )\colon \mathbb {R}^{n}\rightarrow [1,\infty )$ such that \[ 1< p_{-}:=\mathop {\rm ess inf}_{x\in \mathbb {R}^n}p(x) \quad \text{and}\quad p_{+}:=\mathop {\rm ess sup}_{x\in \mathbb {R}^n}p(x)<\infty , \]
and by $\mathcal {B}(\mathbb {R}^{n})$ the set of all $p(\cdot ) \in \mathcal {P}(\mathbb {R}^{n})$ such that the Hardy-Littlewood maximal function $M$ is bounded on $L^{p(\cdot )}(\mathbb {R}^{n})$. In this paper, the authors give some characterizations of $b$ for which $[M_{\beta },b]$ is bounded from $L^{p(\cdot )}(\mathbb {R} ^{n})$ into $L^{q(\cdot )}(\mathbb {R}^{n})$, when $p(\cdot )\in \mathcal {P}(\mathbb {R}^{n})$, $0<{\beta }<n/p_{+}$ and $1/q(\cdot )=1/p(\cdot )-\beta /n$ with $q(\cdot )(n-\beta )/n \in \mathcal {B}(\mathbb {R}^{n})$.
LA - eng
KW - commutator; BMO; fractional maximal function; variable exponent Lebesgue space; fractional maximal function; variable exponent Lebesgue space; BMO; commutator
UR - http://eudml.org/doc/262009
ER -
References
top- Bastero, J., Milman, M., Ruiz, F. J., 10.1090/S0002-9939-00-05763-4, Proc. Am. Math. Soc. (electronic) 128 (2000), 3329-3334. (2000) Zbl0957.42010MR1777580DOI10.1090/S0002-9939-00-05763-4
- Capone, C., Cruz-Uribe, D., Fiorenza, A., 10.4171/RMI/511, Rev. Mat. Iberoam. 23 (2007), 743-770. (2007) MR2414490DOI10.4171/RMI/511
- Coifman, R. R., Rochberg, R., Weiss, G., Factorization theorems for Hardy spaces in several variables, Ann. Math. (2) 103 (1976), 611-635. (1976) Zbl0326.32011MR0412721
- Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C., The boundedness of classical operators on variable spaces, Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. (2006) Zbl1100.42012MR2210118
- Cruz-Uribe, D., Fiorenza, A., Neugebauer, C., The maximal function on variable spaces, Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. (2003) MR1976842
- Diening, L., 10.1016/j.bulsci.2003.10.003, Bull. Sci. Math. 129 (2005), 657-700. (2005) MR2166733DOI10.1016/j.bulsci.2003.10.003
- Diening, L., Harjulehto, P., Hästö, P., Růžička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017 Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542
- Huang, A. W., Xu, J. S., Multilinear singular integrals and commutators in variable exponent Lebesgue spaces, Appl. Math., Ser. B (Engl. Ed.) 25 (2010), 69-77. (2010) Zbl1224.42030MR2606534
- Izuki, M., 10.1007/s10476-010-0102-8, Anal. Math. 36 (2010), 33-50. (2010) Zbl1224.42025MR2606575DOI10.1007/s10476-010-0102-8
- Kováčik, O., Rákosník, J., On spaces and , Czech. Math. J. 41 (1991), 592-618. (1991) MR1134951
- Milman, M., Schonbek, T., 10.1090/S0002-9939-1990-1075187-4, Proc. Am. Math. Soc. 110 (1990), 961-969. (1990) Zbl0717.46066MR1075187DOI10.1090/S0002-9939-1990-1075187-4
- Segovia, C., Torrea, J. L., Vector-valued commutators and applications, Indiana Univ. Math. J. 38 (1989), 959-971. (1989) Zbl0696.47033MR1029684
- Segovia, C., Torrea, J. L., Higher order commutators for vector-valued Calderón-Zygmund operators, Trans. Am. Math. Soc. 336 (1993), 537-556. (1993) Zbl0799.42009MR1074151
- Xu, J. S., 10.1007/s10587-007-0040-1, Czech. Math. J. 57 (2007), 13-27. (2007) Zbl1174.42312MR2309945DOI10.1007/s10587-007-0040-1
- Zhang, P., Wu, J. L., Commutators of the fractional maximal functions, Acta Math. Sin., Chin. Ser. 52 (2009), 1235-1238. (2009) Zbl1212.42067MR2640953
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.