Commutators of the fractional maximal function on variable exponent Lebesgue spaces

Pu Zhang; Jianglong Wu

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 1, page 183-197
  • ISSN: 0011-4642

Abstract

top
Let M β be the fractional maximal function. The commutator generated by M β and a suitable function b is defined by [ M β , b ] f = M β ( b f ) - b M β ( f ) . Denote by 𝒫 ( n ) the set of all measurable functions p ( · ) : n [ 1 , ) such that 1 < p - : = ess inf x n p ( x ) and p + : = ess sup x n p ( x ) < , and by ( n ) the set of all p ( · ) 𝒫 ( n ) such that the Hardy-Littlewood maximal function M is bounded on L p ( · ) ( n ) . In this paper, the authors give some characterizations of b for which [ M β , b ] is bounded from L p ( · ) ( n ) into L q ( · ) ( n ) , when p ( · ) 𝒫 ( n ) , 0 < β < n / p + and 1 / q ( · ) = 1 / p ( · ) - β / n with q ( · ) ( n - β ) / n ( n ) .

How to cite

top

Zhang, Pu, and Wu, Jianglong. "Commutators of the fractional maximal function on variable exponent Lebesgue spaces." Czechoslovak Mathematical Journal 64.1 (2014): 183-197. <http://eudml.org/doc/262009>.

@article{Zhang2014,
abstract = {Let $M_\{\beta \}$ be the fractional maximal function. The commutator generated by $M_\{\beta \}$ and a suitable function $b$ is defined by $[M_\{\beta \},b]f = M_\{\beta \}(bf)-bM_\{\beta \}(f)$. Denote by $\mathcal \{P\}(\mathbb \{R\}^\{n\})$ the set of all measurable functions $p(\cdot )\colon \mathbb \{R\}^\{n\}\rightarrow [1,\infty )$ such that \[ 1< p\_\{-\}:=\mathop \{\rm ess inf\}\_\{x\in \mathbb \{R\}^n\}p(x) \quad \text\{and\}\quad p\_\{+\}:=\mathop \{\rm ess sup\}\_\{x\in \mathbb \{R\}^n\}p(x)<\infty , \] and by $\mathcal \{B\}(\mathbb \{R\}^\{n\})$ the set of all $p(\cdot ) \in \mathcal \{P\}(\mathbb \{R\}^\{n\})$ such that the Hardy-Littlewood maximal function $M$ is bounded on $L^\{p(\cdot )\}(\mathbb \{R\}^\{n\})$. In this paper, the authors give some characterizations of $b$ for which $[M_\{\beta \},b]$ is bounded from $L^\{p(\cdot )\}(\mathbb \{R\} ^\{n\})$ into $L^\{q(\cdot )\}(\mathbb \{R\}^\{n\})$, when $p(\cdot )\in \mathcal \{P\}(\mathbb \{R\}^\{n\})$, $0<\{\beta \}<n/p_\{+\}$ and $1/q(\cdot )=1/p(\cdot )-\beta /n$ with $q(\cdot )(n-\beta )/n \in \mathcal \{B\}(\mathbb \{R\}^\{n\})$.},
author = {Zhang, Pu, Wu, Jianglong},
journal = {Czechoslovak Mathematical Journal},
keywords = {commutator; BMO; fractional maximal function; variable exponent Lebesgue space; fractional maximal function; variable exponent Lebesgue space; BMO; commutator},
language = {eng},
number = {1},
pages = {183-197},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Commutators of the fractional maximal function on variable exponent Lebesgue spaces},
url = {http://eudml.org/doc/262009},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Zhang, Pu
AU - Wu, Jianglong
TI - Commutators of the fractional maximal function on variable exponent Lebesgue spaces
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 183
EP - 197
AB - Let $M_{\beta }$ be the fractional maximal function. The commutator generated by $M_{\beta }$ and a suitable function $b$ is defined by $[M_{\beta },b]f = M_{\beta }(bf)-bM_{\beta }(f)$. Denote by $\mathcal {P}(\mathbb {R}^{n})$ the set of all measurable functions $p(\cdot )\colon \mathbb {R}^{n}\rightarrow [1,\infty )$ such that \[ 1< p_{-}:=\mathop {\rm ess inf}_{x\in \mathbb {R}^n}p(x) \quad \text{and}\quad p_{+}:=\mathop {\rm ess sup}_{x\in \mathbb {R}^n}p(x)<\infty , \] and by $\mathcal {B}(\mathbb {R}^{n})$ the set of all $p(\cdot ) \in \mathcal {P}(\mathbb {R}^{n})$ such that the Hardy-Littlewood maximal function $M$ is bounded on $L^{p(\cdot )}(\mathbb {R}^{n})$. In this paper, the authors give some characterizations of $b$ for which $[M_{\beta },b]$ is bounded from $L^{p(\cdot )}(\mathbb {R} ^{n})$ into $L^{q(\cdot )}(\mathbb {R}^{n})$, when $p(\cdot )\in \mathcal {P}(\mathbb {R}^{n})$, $0<{\beta }<n/p_{+}$ and $1/q(\cdot )=1/p(\cdot )-\beta /n$ with $q(\cdot )(n-\beta )/n \in \mathcal {B}(\mathbb {R}^{n})$.
LA - eng
KW - commutator; BMO; fractional maximal function; variable exponent Lebesgue space; fractional maximal function; variable exponent Lebesgue space; BMO; commutator
UR - http://eudml.org/doc/262009
ER -

References

top
  1. Bastero, J., Milman, M., Ruiz, F. J., 10.1090/S0002-9939-00-05763-4, Proc. Am. Math. Soc. (electronic) 128 (2000), 3329-3334. (2000) Zbl0957.42010MR1777580DOI10.1090/S0002-9939-00-05763-4
  2. Capone, C., Cruz-Uribe, D., Fiorenza, A., 10.4171/RMI/511, Rev. Mat. Iberoam. 23 (2007), 743-770. (2007) MR2414490DOI10.4171/RMI/511
  3. Coifman, R. R., Rochberg, R., Weiss, G., Factorization theorems for Hardy spaces in several variables, Ann. Math. (2) 103 (1976), 611-635. (1976) Zbl0326.32011MR0412721
  4. Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C., The boundedness of classical operators on variable L p spaces, Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. (2006) Zbl1100.42012MR2210118
  5. Cruz-Uribe, D., Fiorenza, A., Neugebauer, C., The maximal function on variable L p spaces, Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. (2003) MR1976842
  6. Diening, L., 10.1016/j.bulsci.2003.10.003, Bull. Sci. Math. 129 (2005), 657-700. (2005) MR2166733DOI10.1016/j.bulsci.2003.10.003
  7. Diening, L., Harjulehto, P., Hästö, P., Růžička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017 Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542
  8. Huang, A. W., Xu, J. S., Multilinear singular integrals and commutators in variable exponent Lebesgue spaces, Appl. Math., Ser. B (Engl. Ed.) 25 (2010), 69-77. (2010) Zbl1224.42030MR2606534
  9. Izuki, M., 10.1007/s10476-010-0102-8, Anal. Math. 36 (2010), 33-50. (2010) Zbl1224.42025MR2606575DOI10.1007/s10476-010-0102-8
  10. Kováčik, O., Rákosník, J., On spaces L p ( x ) and W k , p ( x ) , Czech. Math. J. 41 (1991), 592-618. (1991) MR1134951
  11. Milman, M., Schonbek, T., 10.1090/S0002-9939-1990-1075187-4, Proc. Am. Math. Soc. 110 (1990), 961-969. (1990) Zbl0717.46066MR1075187DOI10.1090/S0002-9939-1990-1075187-4
  12. Segovia, C., Torrea, J. L., Vector-valued commutators and applications, Indiana Univ. Math. J. 38 (1989), 959-971. (1989) Zbl0696.47033MR1029684
  13. Segovia, C., Torrea, J. L., Higher order commutators for vector-valued Calderón-Zygmund operators, Trans. Am. Math. Soc. 336 (1993), 537-556. (1993) Zbl0799.42009MR1074151
  14. Xu, J. S., 10.1007/s10587-007-0040-1, Czech. Math. J. 57 (2007), 13-27. (2007) Zbl1174.42312MR2309945DOI10.1007/s10587-007-0040-1
  15. Zhang, P., Wu, J. L., Commutators of the fractional maximal functions, Acta Math. Sin., Chin. Ser. 52 (2009), 1235-1238. (2009) Zbl1212.42067MR2640953

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.