The boundedness of multilinear commutators of singular integrals on Lebesgue spaces with variable exponent

Jingshi Xu

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 1, page 13-27
  • ISSN: 0011-4642

Abstract

top
The boundednees of multilinear commutators of Calderón-Zygmund singular integrals on Lebesgue spaces with variable exponent is obtained. The multilinear commutators of generalized Hardy-Littlewood maximal operator are also considered.

How to cite

top

Xu, Jingshi. "The boundedness of multilinear commutators of singular integrals on Lebesgue spaces with variable exponent." Czechoslovak Mathematical Journal 57.1 (2007): 13-27. <http://eudml.org/doc/31109>.

@article{Xu2007,
abstract = {The boundednees of multilinear commutators of Calderón-Zygmund singular integrals on Lebesgue spaces with variable exponent is obtained. The multilinear commutators of generalized Hardy-Littlewood maximal operator are also considered.},
author = {Xu, Jingshi},
journal = {Czechoslovak Mathematical Journal},
keywords = {commutator; Calderón-Zygmund singular integral; BMO; Lebesgue space with variable exponent; maximal function; Calderón-Zygmund singular integral; BMO},
language = {eng},
number = {1},
pages = {13-27},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The boundedness of multilinear commutators of singular integrals on Lebesgue spaces with variable exponent},
url = {http://eudml.org/doc/31109},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Xu, Jingshi
TI - The boundedness of multilinear commutators of singular integrals on Lebesgue spaces with variable exponent
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 13
EP - 27
AB - The boundednees of multilinear commutators of Calderón-Zygmund singular integrals on Lebesgue spaces with variable exponent is obtained. The multilinear commutators of generalized Hardy-Littlewood maximal operator are also considered.
LA - eng
KW - commutator; Calderón-Zygmund singular integral; BMO; Lebesgue space with variable exponent; maximal function; Calderón-Zygmund singular integral; BMO
UR - http://eudml.org/doc/31109
ER -

References

top
  1. Factorization theorems for Hardy spaces in several variables, Ann. of Math. 123 (1976), 611–635. (1976) MR0412721
  2. The maximal function on variable L p   spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), 223–238. (2003) MR1976842
  3. Maximal function on generalized Lebesgue spaces L p ( · ) , Math. Inequal. Appl. 7 (2004), 245–253. (2004) MR2057643
  4. Calderón-Zygmund operators on generalized Lebesgue spaces L p ( · ) and problems related to fluid dynamics, J. Reine Angew. Math. 563 (2003), 197–220. (2003) MR2009242
  5. 10.1512/iumj.1991.40.40063, Indiana Univ. Math. J. 40 (1991), 1397–1420. (1991) MR1142721DOI10.1512/iumj.1991.40.40063
  6. 10.1007/BF02386000, Ark. Mat. 16 (1978), 263–270. (1978) Zbl0404.42013MR0524754DOI10.1007/BF02386000
  7. Commutators of singular integrals on generalized L p spaces with variable exponent, Publ. Nat. 49 (2005), 111–125. (2005) MR2140202
  8. Maximal and fractional operators in weighted L p ( x ) spaces, Revista Mat. Iberoam. 20 (2004), 493–515. (2004) MR2073129
  9. On spaces L p ( x ) and W k , p ( x ) , Czech. Math. J. 41 (1991), 592–618. (1991) MR1134951
  10. Weighted norm inequalities for the local sharp maximal function, J. Fourier Anal. Appl. 10 (2004), 465–474. (2004) Zbl1098.42013MR2093912
  11. 10.1090/S0002-9947-1972-0293384-6, Trans. Amer. Math. Soc. 165 (1972), 207–226. (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
  12. Orlicz spaces and Modular spaces, Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin, 1983. (1983) Zbl0557.46020MR0724434
  13. Hardy-Littlewood maximal operator on L p ( x ) ( n ) , Math. Inequal. Appl. 7 (2004), 255–265. (2004) MR2057644
  14. 10.1006/jfan.1995.1027, J. Funct. Anal. 128 (1995), 163–185. (1995) Zbl0831.42010MR1317714DOI10.1006/jfan.1995.1027
  15. 10.1112/S0024610702003174, J. London Math. Soc. 65 (2002), 672–692. (2002) MR1895740DOI10.1112/S0024610702003174
  16. 10.1016/S0723-0869(01)80023-2, Expo. Math. 19 (2001), 369–371. (2001) MR1876258DOI10.1016/S0723-0869(01)80023-2
  17. Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000. (2000) MR1810360
  18. Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integral, Princeton University Press. Princeton, NJ, 1993. (1993) MR1232192

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.