Dynamics in a discrete predator-prey system with infected prey

Changjin Xu; Peiluan Li

Mathematica Bohemica (2014)

  • Volume: 139, Issue: 3, page 511-534
  • ISSN: 0862-7959

Abstract

top
In this paper, a discrete version of continuous non-autonomous predator-prey model with infected prey is investigated. By using Gaines and Mawhin's continuation theorem of coincidence degree theory and the method of Lyapunov function, some sufficient conditions for the existence and global asymptotical stability of positive periodic solution of difference equations in consideration are established. An example shows the feasibility of the main results.

How to cite

top

Xu, Changjin, and Li, Peiluan. "Dynamics in a discrete predator-prey system with infected prey." Mathematica Bohemica 139.3 (2014): 511-534. <http://eudml.org/doc/262032>.

@article{Xu2014,
abstract = {In this paper, a discrete version of continuous non-autonomous predator-prey model with infected prey is investigated. By using Gaines and Mawhin's continuation theorem of coincidence degree theory and the method of Lyapunov function, some sufficient conditions for the existence and global asymptotical stability of positive periodic solution of difference equations in consideration are established. An example shows the feasibility of the main results.},
author = {Xu, Changjin, Li, Peiluan},
journal = {Mathematica Bohemica},
keywords = {predator-prey model; periodic solution; topological degree; global asymptotic stability; predator-prey model; periodic solution; topological degree; global asymptotic stability},
language = {eng},
number = {3},
pages = {511-534},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Dynamics in a discrete predator-prey system with infected prey},
url = {http://eudml.org/doc/262032},
volume = {139},
year = {2014},
}

TY - JOUR
AU - Xu, Changjin
AU - Li, Peiluan
TI - Dynamics in a discrete predator-prey system with infected prey
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 3
SP - 511
EP - 534
AB - In this paper, a discrete version of continuous non-autonomous predator-prey model with infected prey is investigated. By using Gaines and Mawhin's continuation theorem of coincidence degree theory and the method of Lyapunov function, some sufficient conditions for the existence and global asymptotical stability of positive periodic solution of difference equations in consideration are established. An example shows the feasibility of the main results.
LA - eng
KW - predator-prey model; periodic solution; topological degree; global asymptotic stability; predator-prey model; periodic solution; topological degree; global asymptotic stability
UR - http://eudml.org/doc/262032
ER -

References

top
  1. Agiza, H. N., Elabbasy, E. M., El-Metwally, H., Elsadany, A. A., Chaotic dynamics of a discrete prey-predator model with Holling type II, Nonlinear Anal., Real World Appl. 10 116-129 (2009). (2009) Zbl1154.37335MR2451695
  2. Apreutesei, N., Dimitriu, G., 10.1016/j.cam.2010.05.040, J. Comput. Appl. Math. 235 366-379 (2010). (2010) Zbl1205.65274MR2677695DOI10.1016/j.cam.2010.05.040
  3. Dai, B., Zou, J., Periodic solutions of a discrete-time diffusive system governed by backward difference equations, Adv. Difference Equ. 2005 263-274 (2005). (2005) Zbl1128.39300MR2201685
  4. Ding, X., Lu, C., 10.1016/j.apm.2008.08.008, Appl. Math. Modelling 33 2748-2756 (2009). (2009) Zbl1205.39001MR2502144DOI10.1016/j.apm.2008.08.008
  5. Fan, M., Wang, K., 10.1016/S0895-7177(02)00062-6, Math. Comput. Modelling 35 951-961 (2002). (2002) Zbl1050.39022MR1910673DOI10.1016/S0895-7177(02)00062-6
  6. Fazly, M., Hesaaraki, M., 10.1016/j.crma.2007.06.021, C. R., Math., Acad. Sci. Paris 345 199-202 (2007). (2007) Zbl1122.39005MR2352919DOI10.1016/j.crma.2007.06.021
  7. Freedman, H. I., Deterministic Mathematical Models in Population Ecology, Monographs and Textbooks in Pure and Applied Mathematics 57 Marcel Dekker, New York (1980). (1980) Zbl0448.92023MR0586941
  8. Gaines, R. E., Mawhin, J. L., 10.1007/BFb0089537, Lecture Notes in Mathematics 568 Springer, Berlin (1977). (1977) Zbl0339.47031MR0637067DOI10.1007/BFb0089537
  9. Hilker, F. M., Malchow, H., 10.1080/08898480600788568, Math. Popul. Stud. 13 119-134 (2006). (2006) Zbl1157.92324MR2248300DOI10.1080/08898480600788568
  10. Jiao, J., Cai, S., Chen, L., 10.1007/s12190-009-0372-0, J. Appl. Math. Comput. 35 483-495 (2011). (2011) Zbl1216.34041MR2748380DOI10.1007/s12190-009-0372-0
  11. Jiao, J., Meng, X., Chen, L., 10.1016/j.chaos.2007.11.015, Chaos Solitons Fractals 41 103-112 (2009). (2009) Zbl1198.34153MR2533324DOI10.1016/j.chaos.2007.11.015
  12. Kar, T. K., Misra, S., Mukhopadhyay, B., 10.1007/BF02896487, J. Appl. Math. Comput. 22 387-401 (2006). (2006) MR2248467DOI10.1007/BF02896487
  13. Ko, W., Ryu, K., 10.1016/j.na.2009.01.097, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 e1109--e1115 (2009). (2009) Zbl1238.35162MR2671903DOI10.1016/j.na.2009.01.097
  14. Li, Y., 10.1155/IJMMS.2005.499, Int. J. Math. Math. Sci. 2005 499-506 (2005). (2005) Zbl1081.92042MR2172389DOI10.1155/IJMMS.2005.499
  15. Li, Y., Zhao, K., Ye, Y., Multiple positive periodic solutions of n species delay competition systems with harvesting terms, Nonlinear Anal., Real World Appl. 12 1013-1022 (2011). (2011) Zbl1225.34094MR2736189
  16. Liu, Q., Xu, R., Periodic solutions for a delayed one-predator and two-prey system with Holling type-{II} functional response, Ann. Differential Equations 21 14-28 (2005). (2005) MR2133880
  17. Liu, Z., Zhong, S., Liu, X., 10.1016/j.jfranklin.2010.11.007, J. Franklin Inst. 348 277-299 (2011). (2011) Zbl1210.35278MR2771841DOI10.1016/j.jfranklin.2010.11.007
  18. Nindjin, A. F., Aziz-Alaoui, M. A., Cadivel, M., Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay, Nonlinear Anal., Real World Appl. 7 1104-1118 (2006). (2006) Zbl1104.92065MR2260902
  19. Pei, Y., Chen, L., Zhang, Q., Li, C., 10.1016/j.jtbi.2005.02.003, J. Theoret. Biol. 235 495-503 (2005). (2005) MR2158283DOI10.1016/j.jtbi.2005.02.003
  20. Scheffer, M., 10.2307/3545491, Oikos 62 271-282 (1991). (1991) DOI10.2307/3545491
  21. Song, X., Li, Y., Dynamic behaviors of the periodic predator-prey model with modified Leslie-Gower Holling-type II schemes and impulsive effect, Nonlinear Anal., Real World Appl. 9 64-79 (2008). (2008) Zbl1142.34031MR2370163
  22. Wang, G.-Q., Cheng, S. S., Positive periodic solutions for nonlinear difference equations via a continuation theorem, Adv. Difference Equ. 2004 311-320 (2004). (2004) Zbl1095.39011MR2129756
  23. Wang, L.-L., Li, W.-T., Zhao, P.-H., Existence and global stability of positive periodic solutions of a discrete predator-prey system with delays, Adv. Difference Equ. 2004 321-336 (2004). (2004) Zbl1081.39007MR2129757
  24. Wiener, J., Differential equations with piecewise constant delays, Trends in Theory and Practice of Nonlinear Differential Equations V. Lakshmikantham Proc. Int. Conf., Arlington/Tex. 1982. Lecture Notes in Pure and Appl. Math. 90 Dekker, New York 547-552 (1984). (1984) Zbl0557.34059MR0741544
  25. Xu, R., Chen, L., Hao, F., 10.1016/j.amc.2005.01.027, Appl. Math. Comput. 171 91-103 (2005). (2005) Zbl1081.92043MR2192861DOI10.1016/j.amc.2005.01.027
  26. Zhang, J., Fang, H., Multiple periodic solutions for a discrete time model of plankton allelopathy, Adv. Difference Equ. (electronic only) 2006 Article ID 90479, 14 pages (2006). (2006) Zbl1134.39008MR2209678
  27. Zhang, R. Y., Wang, Z. C., Chen, Y., Wu, J., 10.1016/S0898-1221(99)00315-6, Comput. Math. Appl. 39 77-90 (2000). (2000) Zbl0970.92019MR1729420DOI10.1016/S0898-1221(99)00315-6
  28. Zhang, W., Zhu, D., Bi, P., 10.1016/j.aml.2006.11.005, Appl. Math. Lett. 20 1031-1038 (2007). (2007) Zbl1142.39015MR2344777DOI10.1016/j.aml.2006.11.005
  29. Zhang, Z., Hou, Z., Existence of four positive periodic solutions for a ratio-dependent predator-prey system with multiple exploited (or harvesting) terms, Nonlinear Anal., Real World Appl. 11 1560-1571 (2010). (2010) Zbl1198.34081MR2646569
  30. Zhang, Z., Luo, J., Multiple periodic solutions of a delayed predator-prey system with stage structure for the predator, Nonlinear Anal., Real World Appl. 11 4109-4120 (2010). (2010) Zbl1205.34111MR2683859
  31. Zhuang, K., Wen, Z., Dynamics of a discrete three species food chain system, Int. J. Comput. Math. Sci. 5 13-15 (2011). (2011) MR2659270

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.