Dynamics in a discrete predator-prey system with infected prey
Mathematica Bohemica (2014)
- Volume: 139, Issue: 3, page 511-534
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topXu, Changjin, and Li, Peiluan. "Dynamics in a discrete predator-prey system with infected prey." Mathematica Bohemica 139.3 (2014): 511-534. <http://eudml.org/doc/262032>.
@article{Xu2014,
abstract = {In this paper, a discrete version of continuous non-autonomous predator-prey model with infected prey is investigated. By using Gaines and Mawhin's continuation theorem of coincidence degree theory and the method of Lyapunov function, some sufficient conditions for the existence and global asymptotical stability of positive periodic solution of difference equations in consideration are established. An example shows the feasibility of the main results.},
author = {Xu, Changjin, Li, Peiluan},
journal = {Mathematica Bohemica},
keywords = {predator-prey model; periodic solution; topological degree; global asymptotic stability; predator-prey model; periodic solution; topological degree; global asymptotic stability},
language = {eng},
number = {3},
pages = {511-534},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Dynamics in a discrete predator-prey system with infected prey},
url = {http://eudml.org/doc/262032},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Xu, Changjin
AU - Li, Peiluan
TI - Dynamics in a discrete predator-prey system with infected prey
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 3
SP - 511
EP - 534
AB - In this paper, a discrete version of continuous non-autonomous predator-prey model with infected prey is investigated. By using Gaines and Mawhin's continuation theorem of coincidence degree theory and the method of Lyapunov function, some sufficient conditions for the existence and global asymptotical stability of positive periodic solution of difference equations in consideration are established. An example shows the feasibility of the main results.
LA - eng
KW - predator-prey model; periodic solution; topological degree; global asymptotic stability; predator-prey model; periodic solution; topological degree; global asymptotic stability
UR - http://eudml.org/doc/262032
ER -
References
top- Agiza, H. N., Elabbasy, E. M., El-Metwally, H., Elsadany, A. A., Chaotic dynamics of a discrete prey-predator model with Holling type II, Nonlinear Anal., Real World Appl. 10 116-129 (2009). (2009) Zbl1154.37335MR2451695
- Apreutesei, N., Dimitriu, G., 10.1016/j.cam.2010.05.040, J. Comput. Appl. Math. 235 366-379 (2010). (2010) Zbl1205.65274MR2677695DOI10.1016/j.cam.2010.05.040
- Dai, B., Zou, J., Periodic solutions of a discrete-time diffusive system governed by backward difference equations, Adv. Difference Equ. 2005 263-274 (2005). (2005) Zbl1128.39300MR2201685
- Ding, X., Lu, C., 10.1016/j.apm.2008.08.008, Appl. Math. Modelling 33 2748-2756 (2009). (2009) Zbl1205.39001MR2502144DOI10.1016/j.apm.2008.08.008
- Fan, M., Wang, K., 10.1016/S0895-7177(02)00062-6, Math. Comput. Modelling 35 951-961 (2002). (2002) Zbl1050.39022MR1910673DOI10.1016/S0895-7177(02)00062-6
- Fazly, M., Hesaaraki, M., 10.1016/j.crma.2007.06.021, C. R., Math., Acad. Sci. Paris 345 199-202 (2007). (2007) Zbl1122.39005MR2352919DOI10.1016/j.crma.2007.06.021
- Freedman, H. I., Deterministic Mathematical Models in Population Ecology, Monographs and Textbooks in Pure and Applied Mathematics 57 Marcel Dekker, New York (1980). (1980) Zbl0448.92023MR0586941
- Gaines, R. E., Mawhin, J. L., 10.1007/BFb0089537, Lecture Notes in Mathematics 568 Springer, Berlin (1977). (1977) Zbl0339.47031MR0637067DOI10.1007/BFb0089537
- Hilker, F. M., Malchow, H., 10.1080/08898480600788568, Math. Popul. Stud. 13 119-134 (2006). (2006) Zbl1157.92324MR2248300DOI10.1080/08898480600788568
- Jiao, J., Cai, S., Chen, L., 10.1007/s12190-009-0372-0, J. Appl. Math. Comput. 35 483-495 (2011). (2011) Zbl1216.34041MR2748380DOI10.1007/s12190-009-0372-0
- Jiao, J., Meng, X., Chen, L., 10.1016/j.chaos.2007.11.015, Chaos Solitons Fractals 41 103-112 (2009). (2009) Zbl1198.34153MR2533324DOI10.1016/j.chaos.2007.11.015
- Kar, T. K., Misra, S., Mukhopadhyay, B., 10.1007/BF02896487, J. Appl. Math. Comput. 22 387-401 (2006). (2006) MR2248467DOI10.1007/BF02896487
- Ko, W., Ryu, K., 10.1016/j.na.2009.01.097, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 e1109--e1115 (2009). (2009) Zbl1238.35162MR2671903DOI10.1016/j.na.2009.01.097
- Li, Y., 10.1155/IJMMS.2005.499, Int. J. Math. Math. Sci. 2005 499-506 (2005). (2005) Zbl1081.92042MR2172389DOI10.1155/IJMMS.2005.499
- Li, Y., Zhao, K., Ye, Y., Multiple positive periodic solutions of species delay competition systems with harvesting terms, Nonlinear Anal., Real World Appl. 12 1013-1022 (2011). (2011) Zbl1225.34094MR2736189
- Liu, Q., Xu, R., Periodic solutions for a delayed one-predator and two-prey system with Holling type-{II} functional response, Ann. Differential Equations 21 14-28 (2005). (2005) MR2133880
- Liu, Z., Zhong, S., Liu, X., 10.1016/j.jfranklin.2010.11.007, J. Franklin Inst. 348 277-299 (2011). (2011) Zbl1210.35278MR2771841DOI10.1016/j.jfranklin.2010.11.007
- Nindjin, A. F., Aziz-Alaoui, M. A., Cadivel, M., Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay, Nonlinear Anal., Real World Appl. 7 1104-1118 (2006). (2006) Zbl1104.92065MR2260902
- Pei, Y., Chen, L., Zhang, Q., Li, C., 10.1016/j.jtbi.2005.02.003, J. Theoret. Biol. 235 495-503 (2005). (2005) MR2158283DOI10.1016/j.jtbi.2005.02.003
- Scheffer, M., 10.2307/3545491, Oikos 62 271-282 (1991). (1991) DOI10.2307/3545491
- Song, X., Li, Y., Dynamic behaviors of the periodic predator-prey model with modified Leslie-Gower Holling-type II schemes and impulsive effect, Nonlinear Anal., Real World Appl. 9 64-79 (2008). (2008) Zbl1142.34031MR2370163
- Wang, G.-Q., Cheng, S. S., Positive periodic solutions for nonlinear difference equations via a continuation theorem, Adv. Difference Equ. 2004 311-320 (2004). (2004) Zbl1095.39011MR2129756
- Wang, L.-L., Li, W.-T., Zhao, P.-H., Existence and global stability of positive periodic solutions of a discrete predator-prey system with delays, Adv. Difference Equ. 2004 321-336 (2004). (2004) Zbl1081.39007MR2129757
- Wiener, J., Differential equations with piecewise constant delays, Trends in Theory and Practice of Nonlinear Differential Equations V. Lakshmikantham Proc. Int. Conf., Arlington/Tex. 1982. Lecture Notes in Pure and Appl. Math. 90 Dekker, New York 547-552 (1984). (1984) Zbl0557.34059MR0741544
- Xu, R., Chen, L., Hao, F., 10.1016/j.amc.2005.01.027, Appl. Math. Comput. 171 91-103 (2005). (2005) Zbl1081.92043MR2192861DOI10.1016/j.amc.2005.01.027
- Zhang, J., Fang, H., Multiple periodic solutions for a discrete time model of plankton allelopathy, Adv. Difference Equ. (electronic only) 2006 Article ID 90479, 14 pages (2006). (2006) Zbl1134.39008MR2209678
- Zhang, R. Y., Wang, Z. C., Chen, Y., Wu, J., 10.1016/S0898-1221(99)00315-6, Comput. Math. Appl. 39 77-90 (2000). (2000) Zbl0970.92019MR1729420DOI10.1016/S0898-1221(99)00315-6
- Zhang, W., Zhu, D., Bi, P., 10.1016/j.aml.2006.11.005, Appl. Math. Lett. 20 1031-1038 (2007). (2007) Zbl1142.39015MR2344777DOI10.1016/j.aml.2006.11.005
- Zhang, Z., Hou, Z., Existence of four positive periodic solutions for a ratio-dependent predator-prey system with multiple exploited (or harvesting) terms, Nonlinear Anal., Real World Appl. 11 1560-1571 (2010). (2010) Zbl1198.34081MR2646569
- Zhang, Z., Luo, J., Multiple periodic solutions of a delayed predator-prey system with stage structure for the predator, Nonlinear Anal., Real World Appl. 11 4109-4120 (2010). (2010) Zbl1205.34111MR2683859
- Zhuang, K., Wen, Z., Dynamics of a discrete three species food chain system, Int. J. Comput. Math. Sci. 5 13-15 (2011). (2011) MR2659270
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.