Ramanujan-Fourier series and the conjecture D of Hardy and Littlewood
H. Gopalakrishna Gadiyar; Ramanathan Padma
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 1, page 251-267
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGadiyar, H. Gopalakrishna, and Padma, Ramanathan. "Ramanujan-Fourier series and the conjecture D of Hardy and Littlewood." Czechoslovak Mathematical Journal 64.1 (2014): 251-267. <http://eudml.org/doc/262036>.
@article{Gadiyar2014,
abstract = {We give a heuristic proof of a conjecture of Hardy and Littlewood concerning the density of prime pairs to which twin primes and Sophie Germain primes are special cases. The method uses the Ramanujan-Fourier series for a modified von Mangoldt function and the Wiener-Khintchine theorem for arithmetical functions. The failing of the heuristic proof is due to the lack of justification of interchange of certain limits. Experimental evidence using computer calculations is provided for the plausibility of the result. We have also shown that our argument can be extended to the $m$-tuple conjecture of Hardy and Littlewood.},
author = {Gadiyar, H. Gopalakrishna, Padma, Ramanathan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Ramanujan-Fourier series; von Mangoldt function; twin primes; Sophie Germain prime; Wiener-Khintchine theorem; Ramanujan-Fourier series; von Mangoldt function; twin primes; Sophie Germain prime; Wiener-Khintchine theorem},
language = {eng},
number = {1},
pages = {251-267},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ramanujan-Fourier series and the conjecture D of Hardy and Littlewood},
url = {http://eudml.org/doc/262036},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Gadiyar, H. Gopalakrishna
AU - Padma, Ramanathan
TI - Ramanujan-Fourier series and the conjecture D of Hardy and Littlewood
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 251
EP - 267
AB - We give a heuristic proof of a conjecture of Hardy and Littlewood concerning the density of prime pairs to which twin primes and Sophie Germain primes are special cases. The method uses the Ramanujan-Fourier series for a modified von Mangoldt function and the Wiener-Khintchine theorem for arithmetical functions. The failing of the heuristic proof is due to the lack of justification of interchange of certain limits. Experimental evidence using computer calculations is provided for the plausibility of the result. We have also shown that our argument can be extended to the $m$-tuple conjecture of Hardy and Littlewood.
LA - eng
KW - Ramanujan-Fourier series; von Mangoldt function; twin primes; Sophie Germain prime; Wiener-Khintchine theorem; Ramanujan-Fourier series; von Mangoldt function; twin primes; Sophie Germain prime; Wiener-Khintchine theorem
UR - http://eudml.org/doc/262036
ER -
References
top- Agrawal, M., Kayal, N., Saxena, N., PRIMES is in P, Ann. Math. 160 (2004), 781-793. (2004) Zbl1071.11070MR2123939
- Brun, V., The sieve of Eratosthenes and the theorem of Goldbach, The Goldbach Conjecture Y. Wang Series in Pure Mathematics 4 World Scientific, Singapore (2002), 99-136. (2002) MR0677199
- Carmichael, R. D., 10.1112/plms/s2-34.1.1, Proc. Lond. Math. Soc., II. Ser. 34 (1932), 1-26. (1932) Zbl0004.29305MR1576142DOI10.1112/plms/s2-34.1.1
- Cojocaru, A. C., Murty, M. R., An Introduction to Sieve Methods and their Applications, London Mathematical Society Lecture Note Series 66 Cambridge University Press, Cambridge (2006). (2006) Zbl1121.11063MR2200366
- Dickson, L. E., History of the Theory of Numbers, Vol. I: Divisibility and Primality. Reprint of the 1919 original, Chelsea Publishing New York (1966). (1966) MR0245499
- Einstein, A., Method for the determination of the statistical values of observations concerning quantities subject to irregular fluctuations, Arch. Sci. Phys. et Natur. 37 (1914), 254-256. (1914)
- Gadiyar, H. G., Padma, R., 10.1016/S0378-4371(99)00171-5, Phys. A 269 (1999), 503-510. (1999) MR1702866DOI10.1016/S0378-4371(99)00171-5
- Golomb, S. W., 10.1016/0022-314X(70)90019-3, J. Number Theory 2 (1970), 193-198. (1970) Zbl0198.37601MR0257013DOI10.1016/0022-314X(70)90019-3
- Hardy, G. H., Goldbach's Theorem. (A lecture to the Math. Soc. of Copenhague on 6. October 1921), Mat. Tidsskr. B 1922 (1922), 1-16. (1922)
- Hardy, G. H., Note on Ramanujan’s trigonometrical function and certain series of arithmetical functions, Cambr. Phil. Soc. Proc. 20 (1921), 263-271. (1921)
- Hardy, G. H., Some Famous Problems of the Theory of Numbers and in Particular Waring's Problem. An inaugural lecture delivered before the University of Oxford, Clarendon Press Oxford (1920). (1920)
- Hardy, G. H., Littlewood, J. E., 10.1007/BF02403921, Acta Math. 44 (1923), 1-70. (1923) MR1555183DOI10.1007/BF02403921
- Hardy, G. H., Ramanujan, S., Asymptotic formulae in combinatory analysis, Lond. M. S. Proc. 17 (1918), 75-115; Collected Papers of Srinivasa Ramanujan AMS Chelsea Publ., Providence (2000), 276-309. (2000) MR2280879
- Khintchine, A., 10.1007/BF01449156, Math. Ann. 109 (1934), 604-615 German. (1934) Zbl0008.36806MR1512911DOI10.1007/BF01449156
- Kittel, C., Elementary Statistical Physics, John Wiley New York (1958). (1958) MR0096402
- Rademacher, H., Topics in Analytic Number Theory, E. Grosswald et al. Die Grundlehren der mathematischen Wissenschaften. Band 169 Springer, New York (1973). (1973) Zbl0253.10002MR0364103
- Ramanujan, S., On certain trigonometrical sums and their applications in the theory of numbers, Trans. Cambridge Philos. Soc. 22 (1918), 259-276; Collected Papers of Srinivasa Ramanujan AMS Chelsea Publ., Providence (2000), 179-199. (2000) MR2280864
- Stinson, D. R., Cryptography. Theory and Practice, Series on Discrete Mathematics and its Applications CRC Press, Boca Raton (1995). (1995) Zbl0855.94001MR1327060
- Wiener, N., 10.1007/BF02546511, Acta Math. 55 (1930), 117-258. (1930) MR1555316DOI10.1007/BF02546511
- Yaglom, A. M., 10.1109/MASSP.1987.1165596, ASSP Magazine, IEEE 4 (1987), 7-11. (1987) DOI10.1109/MASSP.1987.1165596
- Zhang, Y., 10.4007/annals.2014.179.3.7, Annals of Math. 179 (2014), 1121-1174. (2014) Zbl1290.11128MR3171761DOI10.4007/annals.2014.179.3.7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.