Ramanujan-Fourier series and the conjecture D of Hardy and Littlewood

H. Gopalakrishna Gadiyar; Ramanathan Padma

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 1, page 251-267
  • ISSN: 0011-4642

Abstract

top
We give a heuristic proof of a conjecture of Hardy and Littlewood concerning the density of prime pairs to which twin primes and Sophie Germain primes are special cases. The method uses the Ramanujan-Fourier series for a modified von Mangoldt function and the Wiener-Khintchine theorem for arithmetical functions. The failing of the heuristic proof is due to the lack of justification of interchange of certain limits. Experimental evidence using computer calculations is provided for the plausibility of the result. We have also shown that our argument can be extended to the m -tuple conjecture of Hardy and Littlewood.

How to cite

top

Gadiyar, H. Gopalakrishna, and Padma, Ramanathan. "Ramanujan-Fourier series and the conjecture D of Hardy and Littlewood." Czechoslovak Mathematical Journal 64.1 (2014): 251-267. <http://eudml.org/doc/262036>.

@article{Gadiyar2014,
abstract = {We give a heuristic proof of a conjecture of Hardy and Littlewood concerning the density of prime pairs to which twin primes and Sophie Germain primes are special cases. The method uses the Ramanujan-Fourier series for a modified von Mangoldt function and the Wiener-Khintchine theorem for arithmetical functions. The failing of the heuristic proof is due to the lack of justification of interchange of certain limits. Experimental evidence using computer calculations is provided for the plausibility of the result. We have also shown that our argument can be extended to the $m$-tuple conjecture of Hardy and Littlewood.},
author = {Gadiyar, H. Gopalakrishna, Padma, Ramanathan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Ramanujan-Fourier series; von Mangoldt function; twin primes; Sophie Germain prime; Wiener-Khintchine theorem; Ramanujan-Fourier series; von Mangoldt function; twin primes; Sophie Germain prime; Wiener-Khintchine theorem},
language = {eng},
number = {1},
pages = {251-267},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ramanujan-Fourier series and the conjecture D of Hardy and Littlewood},
url = {http://eudml.org/doc/262036},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Gadiyar, H. Gopalakrishna
AU - Padma, Ramanathan
TI - Ramanujan-Fourier series and the conjecture D of Hardy and Littlewood
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 251
EP - 267
AB - We give a heuristic proof of a conjecture of Hardy and Littlewood concerning the density of prime pairs to which twin primes and Sophie Germain primes are special cases. The method uses the Ramanujan-Fourier series for a modified von Mangoldt function and the Wiener-Khintchine theorem for arithmetical functions. The failing of the heuristic proof is due to the lack of justification of interchange of certain limits. Experimental evidence using computer calculations is provided for the plausibility of the result. We have also shown that our argument can be extended to the $m$-tuple conjecture of Hardy and Littlewood.
LA - eng
KW - Ramanujan-Fourier series; von Mangoldt function; twin primes; Sophie Germain prime; Wiener-Khintchine theorem; Ramanujan-Fourier series; von Mangoldt function; twin primes; Sophie Germain prime; Wiener-Khintchine theorem
UR - http://eudml.org/doc/262036
ER -

References

top
  1. Agrawal, M., Kayal, N., Saxena, N., PRIMES is in P, Ann. Math. 160 (2004), 781-793. (2004) Zbl1071.11070MR2123939
  2. Brun, V., The sieve of Eratosthenes and the theorem of Goldbach, The Goldbach Conjecture Y. Wang Series in Pure Mathematics 4 World Scientific, Singapore (2002), 99-136. (2002) MR0677199
  3. Carmichael, R. D., 10.1112/plms/s2-34.1.1, Proc. Lond. Math. Soc., II. Ser. 34 (1932), 1-26. (1932) Zbl0004.29305MR1576142DOI10.1112/plms/s2-34.1.1
  4. Cojocaru, A. C., Murty, M. R., An Introduction to Sieve Methods and their Applications, London Mathematical Society Lecture Note Series 66 Cambridge University Press, Cambridge (2006). (2006) Zbl1121.11063MR2200366
  5. Dickson, L. E., History of the Theory of Numbers, Vol. I: Divisibility and Primality. Reprint of the 1919 original, Chelsea Publishing New York (1966). (1966) MR0245499
  6. Einstein, A., Method for the determination of the statistical values of observations concerning quantities subject to irregular fluctuations, Arch. Sci. Phys. et Natur. 37 (1914), 254-256. (1914) 
  7. Gadiyar, H. G., Padma, R., 10.1016/S0378-4371(99)00171-5, Phys. A 269 (1999), 503-510. (1999) MR1702866DOI10.1016/S0378-4371(99)00171-5
  8. Golomb, S. W., 10.1016/0022-314X(70)90019-3, J. Number Theory 2 (1970), 193-198. (1970) Zbl0198.37601MR0257013DOI10.1016/0022-314X(70)90019-3
  9. Hardy, G. H., Goldbach's Theorem. (A lecture to the Math. Soc. of Copenhague on 6. October 1921), Mat. Tidsskr. B 1922 (1922), 1-16. (1922) 
  10. Hardy, G. H., Note on Ramanujan’s trigonometrical function c q ( n ) and certain series of arithmetical functions, Cambr. Phil. Soc. Proc. 20 (1921), 263-271. (1921) 
  11. Hardy, G. H., Some Famous Problems of the Theory of Numbers and in Particular Waring's Problem. An inaugural lecture delivered before the University of Oxford, Clarendon Press Oxford (1920). (1920) 
  12. Hardy, G. H., Littlewood, J. E., 10.1007/BF02403921, Acta Math. 44 (1923), 1-70. (1923) MR1555183DOI10.1007/BF02403921
  13. Hardy, G. H., Ramanujan, S., Asymptotic formulae in combinatory analysis, Lond. M. S. Proc. 17 (1918), 75-115; Collected Papers of Srinivasa Ramanujan AMS Chelsea Publ., Providence (2000), 276-309. (2000) MR2280879
  14. Khintchine, A., 10.1007/BF01449156, Math. Ann. 109 (1934), 604-615 German. (1934) Zbl0008.36806MR1512911DOI10.1007/BF01449156
  15. Kittel, C., Elementary Statistical Physics, John Wiley New York (1958). (1958) MR0096402
  16. Rademacher, H., Topics in Analytic Number Theory, E. Grosswald et al. Die Grundlehren der mathematischen Wissenschaften. Band 169 Springer, New York (1973). (1973) Zbl0253.10002MR0364103
  17. Ramanujan, S., On certain trigonometrical sums and their applications in the theory of numbers, Trans. Cambridge Philos. Soc. 22 (1918), 259-276; Collected Papers of Srinivasa Ramanujan AMS Chelsea Publ., Providence (2000), 179-199. (2000) MR2280864
  18. Stinson, D. R., Cryptography. Theory and Practice, Series on Discrete Mathematics and its Applications CRC Press, Boca Raton (1995). (1995) Zbl0855.94001MR1327060
  19. Wiener, N., 10.1007/BF02546511, Acta Math. 55 (1930), 117-258. (1930) MR1555316DOI10.1007/BF02546511
  20. Yaglom, A. M., 10.1109/MASSP.1987.1165596, ASSP Magazine, IEEE 4 (1987), 7-11. (1987) DOI10.1109/MASSP.1987.1165596
  21. Zhang, Y., 10.4007/annals.2014.179.3.7, Annals of Math. 179 (2014), 1121-1174. (2014) Zbl1290.11128MR3171761DOI10.4007/annals.2014.179.3.7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.