A preconditioner for the FETI-DP method for mortar-type Crouzeix-Raviart element discretization

Chunmei Wang

Applications of Mathematics (2014)

  • Volume: 59, Issue: 6, page 653-672
  • ISSN: 0862-7940

Abstract

top
In this paper, we consider mortar-type Crouzeix-Raviart element discretizations for second order elliptic problems with discontinuous coefficients. A preconditioner for the FETI-DP method is proposed. We prove that the condition number of the preconditioned operator is bounded by ( 1 + log ( H / h ) ) 2 , where H and h are mesh sizes. Finally, numerical tests are presented to verify the theoretical results.

How to cite

top

Wang, Chunmei. "A preconditioner for the FETI-DP method for mortar-type Crouzeix-Raviart element discretization." Applications of Mathematics 59.6 (2014): 653-672. <http://eudml.org/doc/262037>.

@article{Wang2014,
abstract = {In this paper, we consider mortar-type Crouzeix-Raviart element discretizations for second order elliptic problems with discontinuous coefficients. A preconditioner for the FETI-DP method is proposed. We prove that the condition number of the preconditioned operator is bounded by $(1+\log (H/h))^2$, where $H$ and $h$ are mesh sizes. Finally, numerical tests are presented to verify the theoretical results.},
author = {Wang, Chunmei},
journal = {Applications of Mathematics},
keywords = {FETI-DP; Crouzeix-Raviart element; nonstandard mortar condition; preconditioner; Crouzeix-Raviart element; nonstandard mortar condition; preconditioner; second-order elliptic problems; discontinuous coefficients; condition number; numerical tests},
language = {eng},
number = {6},
pages = {653-672},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A preconditioner for the FETI-DP method for mortar-type Crouzeix-Raviart element discretization},
url = {http://eudml.org/doc/262037},
volume = {59},
year = {2014},
}

TY - JOUR
AU - Wang, Chunmei
TI - A preconditioner for the FETI-DP method for mortar-type Crouzeix-Raviart element discretization
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 6
SP - 653
EP - 672
AB - In this paper, we consider mortar-type Crouzeix-Raviart element discretizations for second order elliptic problems with discontinuous coefficients. A preconditioner for the FETI-DP method is proposed. We prove that the condition number of the preconditioned operator is bounded by $(1+\log (H/h))^2$, where $H$ and $h$ are mesh sizes. Finally, numerical tests are presented to verify the theoretical results.
LA - eng
KW - FETI-DP; Crouzeix-Raviart element; nonstandard mortar condition; preconditioner; Crouzeix-Raviart element; nonstandard mortar condition; preconditioner; second-order elliptic problems; discontinuous coefficients; condition number; numerical tests
UR - http://eudml.org/doc/262037
ER -

References

top
  1. Bernardi, C., Maday, Y., Patera, A. T., A new nonconforming approach to domain decomposition: The mortar element method, H. Brezis et al. Nonlinear Partial Differential Equations and their Applications Collège de France Seminar, Vol. XI, Paris, France, 1989-1991 Logman Scientific & Technical. Pitman Res. Notes Math. Ser. 299 (1994), 13-51. (1994) Zbl0797.65094MR1268898
  2. Brenner, S. C., Scott, L. R., The Mathematical Theory of Finite Element Methods (3rd ed.), Texts in Applied Mathematics 15 Springer, New York (2008). (2008) Zbl1135.65042MR2373954
  3. Dryja, M., Widlund, O. B., A generalized FETI-DP method for a mortar discretization of elliptic problems, Domain Decomposition Methods in Science and Engineering I. Herrera, D. Keyes et al. National Autonomous University of Mexico (UNAM), México (2003), 27-38 (electronic). (2003) MR2093732
  4. Farhat, C., Lesoinne, M., Pierson, K., 10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-S, Numer. Linear Algebra Appl. 7 (2000), 687-714. (2000) Zbl1051.65119MR1802366DOI10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-S
  5. Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., Rixen, D., 10.1002/nme.76, Int. J. Numer. Methods Eng. 50 (2001), 1523-1544. (2001) MR1813746DOI10.1002/nme.76
  6. Kim, H. H., Lee, C.-O., 10.1137/S0036142903423381, SIAM J. Numer. Anal. 42 (2005), 2159-2175. (2005) Zbl1080.65117MR2139242DOI10.1137/S0036142903423381
  7. Klawonn, A., Widlund, O. B., Dryja, M., 10.1137/S0036142901388081, SIAM J. Numer. Anal. 40 (2002), 159-179 (electronic). (2002) Zbl1032.65031MR1921914DOI10.1137/S0036142901388081
  8. Mandel, J., Tezaur, R., 10.1007/s211-001-8014-1, Numer. Math. 88 (2001), 543-558. (2001) Zbl1003.65126MR1835470DOI10.1007/s211-001-8014-1
  9. Mandel, J., Tezaur, R., Farhat, C., 10.1137/S0036142997289896, SIAM J. Numer. Anal. 36 (1999), 1370-1391 (electronic). (1999) Zbl0956.74059MR1706770DOI10.1137/S0036142997289896
  10. Marcinkowski, L., 10.1023/A:1022343324625, BIT 39 (1999), 716-739. (1999) Zbl0944.65115MR1735101DOI10.1023/A:1022343324625
  11. Marcinkowski, L., 10.1007/s002110100389, Numer. Math. 93 (2002), 361-386. (2002) Zbl1036.74046MR1941401DOI10.1007/s002110100389
  12. Marcinkowski, L., 10.1007/s10543-005-7123-x, BIT 45 (2005), 375-394. (2005) Zbl1080.65118MR2176199DOI10.1007/s10543-005-7123-x
  13. Marcinkowski, L., 10.1137/S0036142902387574, SIAM J. Numer. Anal. 42 (2005), 1998-2019 (electronic). (2005) Zbl1076.74055MR2139234DOI10.1137/S0036142902387574
  14. Marcinkowski, L., A preconditioner for a FETI-DP method for mortar element discretization of a 4th order problem in 2D, ETNA, Electron. Trans. Numer. Anal. 38 1-16 electronic only (2011). (2011) Zbl1205.65318MR2871856
  15. Marcinkowski, L., Rahman, T., 10.1007/s10543-008-0167-y, BIT 48 (2008), 607-626. (2008) Zbl1180.65164MR2447988DOI10.1007/s10543-008-0167-y
  16. Marcinkowski, L., Rahman, T., 10.2478/cmam-2012-0005, Comput. Methods Appl. Math. 12 (2012), 73-91. (2012) Zbl1284.65182MR3041002DOI10.2478/cmam-2012-0005
  17. Pierson, K. H., A family of domain decomposition methods for the massively parallel solution of computational mechanics problems, PhD thesis, University of Colorado at Boulder, Aerospace Engineering Sciences (2001). (2001) 
  18. Rahman, T., Bjørstad, P., Xu, X., 10.1137/060663593, SIAM J. Numer. Anal. 46 (2008), 496-516. (2008) Zbl1160.65344MR2377273DOI10.1137/060663593
  19. Sarkis, M., 10.1007/s002110050292, Numer. Math. 77 (1997), 383-406. (1997) Zbl0884.65119MR1469678DOI10.1007/s002110050292
  20. Tezaur, R., Analysis of Lagrange multiplier based domain decomposition, PhD thesis, University of Colorado at Denver, Denver (1998). (1998) MR2697697
  21. Toselli, A., Widlund, O., Domain Decomposition Methods-Algorithms and Theory, Springer Series in Computational Mathematics 34 Springer, Berlin (2005). (2005) Zbl1069.65138MR2104179
  22. Wohlmuth, B. I., Discretization Methods and Iterative Solvers Based on Domain Decomposition, Lecture Notes in Computational Science and Engineering 17 Springer, Berlin (2001). (2001) Zbl0966.65097MR1820470

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.