A preconditioner for the FETI-DP method for mortar-type Crouzeix-Raviart element discretization
Applications of Mathematics (2014)
- Volume: 59, Issue: 6, page 653-672
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topWang, Chunmei. "A preconditioner for the FETI-DP method for mortar-type Crouzeix-Raviart element discretization." Applications of Mathematics 59.6 (2014): 653-672. <http://eudml.org/doc/262037>.
@article{Wang2014,
abstract = {In this paper, we consider mortar-type Crouzeix-Raviart element discretizations for second order elliptic problems with discontinuous coefficients. A preconditioner for the FETI-DP method is proposed. We prove that the condition number of the preconditioned operator is bounded by $(1+\log (H/h))^2$, where $H$ and $h$ are mesh sizes. Finally, numerical tests are presented to verify the theoretical results.},
author = {Wang, Chunmei},
journal = {Applications of Mathematics},
keywords = {FETI-DP; Crouzeix-Raviart element; nonstandard mortar condition; preconditioner; Crouzeix-Raviart element; nonstandard mortar condition; preconditioner; second-order elliptic problems; discontinuous coefficients; condition number; numerical tests},
language = {eng},
number = {6},
pages = {653-672},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A preconditioner for the FETI-DP method for mortar-type Crouzeix-Raviart element discretization},
url = {http://eudml.org/doc/262037},
volume = {59},
year = {2014},
}
TY - JOUR
AU - Wang, Chunmei
TI - A preconditioner for the FETI-DP method for mortar-type Crouzeix-Raviart element discretization
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 6
SP - 653
EP - 672
AB - In this paper, we consider mortar-type Crouzeix-Raviart element discretizations for second order elliptic problems with discontinuous coefficients. A preconditioner for the FETI-DP method is proposed. We prove that the condition number of the preconditioned operator is bounded by $(1+\log (H/h))^2$, where $H$ and $h$ are mesh sizes. Finally, numerical tests are presented to verify the theoretical results.
LA - eng
KW - FETI-DP; Crouzeix-Raviart element; nonstandard mortar condition; preconditioner; Crouzeix-Raviart element; nonstandard mortar condition; preconditioner; second-order elliptic problems; discontinuous coefficients; condition number; numerical tests
UR - http://eudml.org/doc/262037
ER -
References
top- Bernardi, C., Maday, Y., Patera, A. T., A new nonconforming approach to domain decomposition: The mortar element method, H. Brezis et al. Nonlinear Partial Differential Equations and their Applications Collège de France Seminar, Vol. XI, Paris, France, 1989-1991 Logman Scientific & Technical. Pitman Res. Notes Math. Ser. 299 (1994), 13-51. (1994) Zbl0797.65094MR1268898
- Brenner, S. C., Scott, L. R., The Mathematical Theory of Finite Element Methods (3rd ed.), Texts in Applied Mathematics 15 Springer, New York (2008). (2008) Zbl1135.65042MR2373954
- Dryja, M., Widlund, O. B., A generalized FETI-DP method for a mortar discretization of elliptic problems, Domain Decomposition Methods in Science and Engineering I. Herrera, D. Keyes et al. National Autonomous University of Mexico (UNAM), México (2003), 27-38 (electronic). (2003) MR2093732
- Farhat, C., Lesoinne, M., Pierson, K., 10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-S, Numer. Linear Algebra Appl. 7 (2000), 687-714. (2000) Zbl1051.65119MR1802366DOI10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-S
- Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., Rixen, D., 10.1002/nme.76, Int. J. Numer. Methods Eng. 50 (2001), 1523-1544. (2001) MR1813746DOI10.1002/nme.76
- Kim, H. H., Lee, C.-O., 10.1137/S0036142903423381, SIAM J. Numer. Anal. 42 (2005), 2159-2175. (2005) Zbl1080.65117MR2139242DOI10.1137/S0036142903423381
- Klawonn, A., Widlund, O. B., Dryja, M., 10.1137/S0036142901388081, SIAM J. Numer. Anal. 40 (2002), 159-179 (electronic). (2002) Zbl1032.65031MR1921914DOI10.1137/S0036142901388081
- Mandel, J., Tezaur, R., 10.1007/s211-001-8014-1, Numer. Math. 88 (2001), 543-558. (2001) Zbl1003.65126MR1835470DOI10.1007/s211-001-8014-1
- Mandel, J., Tezaur, R., Farhat, C., 10.1137/S0036142997289896, SIAM J. Numer. Anal. 36 (1999), 1370-1391 (electronic). (1999) Zbl0956.74059MR1706770DOI10.1137/S0036142997289896
- Marcinkowski, L., 10.1023/A:1022343324625, BIT 39 (1999), 716-739. (1999) Zbl0944.65115MR1735101DOI10.1023/A:1022343324625
- Marcinkowski, L., 10.1007/s002110100389, Numer. Math. 93 (2002), 361-386. (2002) Zbl1036.74046MR1941401DOI10.1007/s002110100389
- Marcinkowski, L., 10.1007/s10543-005-7123-x, BIT 45 (2005), 375-394. (2005) Zbl1080.65118MR2176199DOI10.1007/s10543-005-7123-x
- Marcinkowski, L., 10.1137/S0036142902387574, SIAM J. Numer. Anal. 42 (2005), 1998-2019 (electronic). (2005) Zbl1076.74055MR2139234DOI10.1137/S0036142902387574
- Marcinkowski, L., A preconditioner for a FETI-DP method for mortar element discretization of a 4th order problem in 2D, ETNA, Electron. Trans. Numer. Anal. 38 1-16 electronic only (2011). (2011) Zbl1205.65318MR2871856
- Marcinkowski, L., Rahman, T., 10.1007/s10543-008-0167-y, BIT 48 (2008), 607-626. (2008) Zbl1180.65164MR2447988DOI10.1007/s10543-008-0167-y
- Marcinkowski, L., Rahman, T., 10.2478/cmam-2012-0005, Comput. Methods Appl. Math. 12 (2012), 73-91. (2012) Zbl1284.65182MR3041002DOI10.2478/cmam-2012-0005
- Pierson, K. H., A family of domain decomposition methods for the massively parallel solution of computational mechanics problems, PhD thesis, University of Colorado at Boulder, Aerospace Engineering Sciences (2001). (2001)
- Rahman, T., Bjørstad, P., Xu, X., 10.1137/060663593, SIAM J. Numer. Anal. 46 (2008), 496-516. (2008) Zbl1160.65344MR2377273DOI10.1137/060663593
- Sarkis, M., 10.1007/s002110050292, Numer. Math. 77 (1997), 383-406. (1997) Zbl0884.65119MR1469678DOI10.1007/s002110050292
- Tezaur, R., Analysis of Lagrange multiplier based domain decomposition, PhD thesis, University of Colorado at Denver, Denver (1998). (1998) MR2697697
- Toselli, A., Widlund, O., Domain Decomposition Methods-Algorithms and Theory, Springer Series in Computational Mathematics 34 Springer, Berlin (2005). (2005) Zbl1069.65138MR2104179
- Wohlmuth, B. I., Discretization Methods and Iterative Solvers Based on Domain Decomposition, Lecture Notes in Computational Science and Engineering 17 Springer, Berlin (2001). (2001) Zbl0966.65097MR1820470
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.