Loading [MathJax]/extensions/MathZoom.js
We give details of the theory of primal domain decomposition (DD) methods for a 2-dimensional second order elliptic equation with homogeneous Dirichlet boundary conditions and jumping coefficients. The problem is discretized by the finite element method. The computational domain is decomposed into triangular subdomains that align with the coefficients jumps. We prove that the condition number of the vertex-based DD preconditioner is , independently of the coefficient jumps, where and denote...
In this paper, to solve the three-by-three block saddle-point problem, a new block triangular (NBT) preconditioner is established, which can effectively avoid the solving difficulty that the coefficient matrices of linear subsystems are Schur complement matrices when the block preconditioner is applied to the Krylov subspace method. Theoretical analysis shows that the iteration method produced by the NBT preconditioner is unconditionally convergent. Besides, some spectral properties are also discussed....
In this paper, we consider mortar-type Crouzeix-Raviart element discretizations for second order elliptic problems with discontinuous coefficients. A preconditioner for the FETI-DP method is proposed. We prove that the condition number of the preconditioned operator is bounded by , where and are mesh sizes. Finally, numerical tests are presented to verify the theoretical results.
Poroelastic systems describe fluid flow through porous medium coupled with deformation of the porous matrix. In this paper, the deformation is described by linear elasticity, the fluid flow is modelled as Darcy flow. The main focus is on the Biot-Barenblatt model with double porosity/double permeability flow, which distinguishes flow in two regions considered as continua. The main goal is in proposing block diagonal preconditionings to systems arising from the discretization of the Biot-Barenblatt...
The optimization of functions subject to partial differential equations (PDE) plays an important role in many areas of science and industry. In this paper we introduce the basic concepts of PDE-constrained optimization and show how the all-at-once approach will lead to linear systems in saddle point form. We will discuss implementation details and different boundary conditions. We then show how these system can be solved efficiently and discuss methods and preconditioners also in the case when bound...
Many problems arising in different fields of science and engineering can be reduced, by applying some appropriate discretization, either to a system of linear algebraic equations or to a sequence of such systems. The solution of a system of linear algebraic equations is very often the most time-consuming part of the computational process during the treatment of the original problem, because these systems can be very large (containing up to many millions of equations). It is, therefore, important...
In this article, a method of cubic spline curve fitting to a set of points passing at a prescribed distance from input points obtained by measurement on a coordinate measuring machine is described. When reconstructing the shape of measured object from the points obtained by real measurements, it is always necessary to consider measurement uncertainty (tenths to tens of micrometres). This uncertainty is not zero, therefore interpolation methods, where the resulting curve passes through the given...
We present a parallel solution algorithm for the transient heat equation in one and two spatial dimensions. The problem is discretized in space by the lowest-order conforming finite element method. Further, a one-step time integration scheme is used for the numerical solution of the arising system of ordinary differential equations. For the latter, the parareal method decomposing the time interval into subintervals is employed. It leads to parallel solution of smaller time-dependent problems. At...
We introduce a new way of the analysis of iterative aggregation-disaggregation
methods for computing stationary probability distribution vectors of stochastic matrices. This new approach is based on the Fourier transform of the
error propagation matrix. Exact formula for its spectrum can be obtained if the stochastic matrix is circulant. Some examples are presented.
The purpose of our work is to develop an automatic shape optimization tool for runner wheel blades in reaction water turbines, especially in Kaplan turbines. The fluid flow is simulated using an in-house incompressible turbulent flow solver based on recently introduced isogeometric analysis (see e.g. J. A. Cotrell et al.: Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley, 2009). The proposed automatic shape optimization approach is based on a so-called hybrid optimization which combines...
A method of characterizing all eigenvalues of a preconditioned discretized scalar diffusion operator with Dirichlet boundary conditions has been recently introduced in Gergelits, Mardal, Nielsen, and Strakoš (2019). Motivated by this paper, we offer a slightly different approach that extends the previous results in some directions. Namely, we provide bounds on all increasingly ordered eigenvalues of a general diffusion or elasticity operator with tensor data, discretized with the conforming finite...
We consider high order finite difference approximations to the Helmholtz equation in an exterior domain. We include a simplified absorbing boundary condition to approximate the Sommerfeld radiation condition. This yields a large, but sparse, complex system, which is not self-adjoint and not positive definite. We discretize the equation with a compact fourth or sixth order accurate scheme. We solve this large system of linear equations with a Krylov subspace iterative method. Since the method converges...
We consider high order finite difference approximations to the Helmholtz equation in an exterior domain. We include a simplified absorbing boundary condition to approximate the Sommerfeld radiation condition. This yields a large, but sparse, complex system, which is not self-adjoint and not positive definite. We discretize the equation with a compact fourth or sixth order accurate scheme. We solve this large system of linear equations with a Krylov subspace iterative method. Since the method converges...
With the emergence of mixed precision hardware, mixed precision GMRES-based iterative refinement schemes for solving linear systems have recently been developed. However, in certain settings, GMRES may require too many iterations per refinement step, making it potentially more expensive than the alternative of recomputing the LU factors in a higher precision. In this work, we incorporate the idea of Krylov subspace recycling, a well-known technique for reusing information across sequential invocations,...
Currently displaying 1 –
20 of
41