Characterizations based on length-biased weighted measure of inaccuracy for truncated random variables

Chanchal Kundu

Applications of Mathematics (2014)

  • Volume: 59, Issue: 6, page 697-714
  • ISSN: 0862-7940

Abstract

top
In survival studies and life testing, the data are generally truncated. Recently, authors have studied a weighted version of Kerridge inaccuracy measure for truncated distributions. In the present paper we consider weighted residual and weighted past inaccuracy measure and study various aspects of their bounds. Characterizations of several important continuous distributions are provided based on weighted residual (past) inaccuracy measure.

How to cite

top

Kundu, Chanchal. "Characterizations based on length-biased weighted measure of inaccuracy for truncated random variables." Applications of Mathematics 59.6 (2014): 697-714. <http://eudml.org/doc/262038>.

@article{Kundu2014,
abstract = {In survival studies and life testing, the data are generally truncated. Recently, authors have studied a weighted version of Kerridge inaccuracy measure for truncated distributions. In the present paper we consider weighted residual and weighted past inaccuracy measure and study various aspects of their bounds. Characterizations of several important continuous distributions are provided based on weighted residual (past) inaccuracy measure.},
author = {Kundu, Chanchal},
journal = {Applications of Mathematics},
keywords = {characterization; entropy; weighted residual (past) inaccuracy; proportional (reversed) hazard model; characterization; entropy; weighted residual (past) inaccuracy; proportional (reversed) hazard model},
language = {eng},
number = {6},
pages = {697-714},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Characterizations based on length-biased weighted measure of inaccuracy for truncated random variables},
url = {http://eudml.org/doc/262038},
volume = {59},
year = {2014},
}

TY - JOUR
AU - Kundu, Chanchal
TI - Characterizations based on length-biased weighted measure of inaccuracy for truncated random variables
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 6
SP - 697
EP - 714
AB - In survival studies and life testing, the data are generally truncated. Recently, authors have studied a weighted version of Kerridge inaccuracy measure for truncated distributions. In the present paper we consider weighted residual and weighted past inaccuracy measure and study various aspects of their bounds. Characterizations of several important continuous distributions are provided based on weighted residual (past) inaccuracy measure.
LA - eng
KW - characterization; entropy; weighted residual (past) inaccuracy; proportional (reversed) hazard model; characterization; entropy; weighted residual (past) inaccuracy; proportional (reversed) hazard model
UR - http://eudml.org/doc/262038
ER -

References

top
  1. Arnold, B. C., Pareto Distributions, Statistical Distributions in Scientific Work 5 International Co-operative Publishing House, Burtonsville (1983). (1983) Zbl1169.62307MR0751409
  2. Azlarov, T. A., Volodin, N. A., Characterization Problems Associated with the Exponential Distribution. Transl. from the Russian, Springer, New York (1986). (1986) Zbl0624.62020MR0841073
  3. Cox, D. R., The analysis of exponentially distributed life-times with two types of failure, J. R. Stat. Soc., Ser. B 21 411-421 (1959). (1959) Zbl0093.15704MR0114280
  4. Cox, D. R., Renewal Theory, Methuen’s Monographs on Applied Probability and Statistics Methuen, London; John Wiley, New York (1962). (1962) Zbl0103.11504MR0153061
  5. Cox, D. R., Regression models and life-tables, J. R. Stat. Soc., Ser. B 34 187-220 (1972). (1972) Zbl0243.62041MR0341758
  6. Crescenzo, A. Di, 10.1016/S0167-7152(00)00127-9, Stat. Probab. Lett. 50 313-321 (2000). (2000) Zbl0967.60016MR1802225DOI10.1016/S0167-7152(00)00127-9
  7. Crescenzo, A. Di, Longobardi, M., On weighted residual and past entropies, Sci. Math. Jpn. 64 255-266 (2006). (2006) Zbl1106.62114MR2254144
  8. Ebrahimi, N., Kirmani, S. N. U. A., 10.1093/biomet/83.1.233, Biometrika 83 233-235 (1996). (1996) Zbl0865.62075MR1399168DOI10.1093/biomet/83.1.233
  9. Furman, E., Zitikis, R., 10.1016/j.insmatheco.2007.10.006, Insur. Math. Econ. 42 459-465 (2008). (2008) Zbl1141.91509MR2392102DOI10.1016/j.insmatheco.2007.10.006
  10. Galambos, J., Kotz, S., 10.1007/BFb0069530, Lecture Notes in Mathematics 675 Springer, Berlin (1978). (1978) Zbl0381.62011MR0513423DOI10.1007/BFb0069530
  11. Gupta, R. C., Gupta, R. D., 10.1016/j.jspi.2007.03.029, J. Stat. Plann. Inference 137 3525-3536 (2007). (2007) Zbl1119.62098MR2363274DOI10.1016/j.jspi.2007.03.029
  12. Gupta, R. C., Gupta, P. L., Gupta, R. D., 10.1080/03610929808832134, Commun. Stat., Theory Methods 27 887-904 (1998). (1998) Zbl0900.62534MR1613497DOI10.1080/03610929808832134
  13. Gupta, R. C., Han, W., Analyzing survival data by PRH models, International Journal of Reliability and Applications 2 (2001), 203-216. (2001) 
  14. Gupta, R. C., Kirmani, S. N. U. A., 10.1080/03610929008830371, Commun. Stat., Theory Methods 19 3147-3162 (1990). (1990) Zbl0734.62093MR1089242DOI10.1080/03610929008830371
  15. Jain, K., Singh, H., Bagai, I., 10.1080/03610928908830162, Commun. Stat., Theory Methods 18 4393-4412 (1989). (1989) Zbl0707.62197MR1046715DOI10.1080/03610928908830162
  16. Kerridge, D. F., Inaccuracy and inference, J. R. Stat. Soc., Ser. B 23 184-194 (1961). (1961) Zbl0112.10302MR0123375
  17. Kullback, S., Leibler, R. A., 10.1214/aoms/1177729694, Ann. Math. Stat. 22 79-86 (1951). (1951) Zbl0042.38403MR0039968DOI10.1214/aoms/1177729694
  18. Kumar, V., Taneja, H. C., 10.1007/s00184-010-0315-7, Metrika 75 73-84 (2012). (2012) Zbl1241.62014MR2878109DOI10.1007/s00184-010-0315-7
  19. Kumar, V., Taneja, H. C., Srivastava, R., 10.1007/BF03263532, Metron 68 (2010), 153-160. (2010) Zbl1301.62104MR3038412DOI10.1007/BF03263532
  20. Kumar, V., Taneja, H. C., Srivastava, R., 10.1007/s00184-009-0286-8, Metrika 74 1-10 (2011). (2011) Zbl1216.62156MR2804725DOI10.1007/s00184-009-0286-8
  21. Nair, N. U., Gupta, R. P., Characterization of proportional hazard models by properties of information measures, International Journal of Statistical Sciences 6 (2007), Special Issue, 223-231. (2007) 
  22. Nair, K. R. M., Rajesh, G., Geometric vitality function and its applications to reliability, IAPQR Trans. 25 1-8 (2000). (2000) Zbl1277.62236MR1949414
  23. Nanda, A. K., Jain, K., 10.1016/S0378-3758(98)00190-6, J. Stat. Plann. Inference 77 169-180 (1999). (1999) Zbl0924.62018MR1687954DOI10.1016/S0378-3758(98)00190-6
  24. Patil, G. P., Ord, J. K., On size-biased sampling and related form-invariant weighted distributions, Sankhyā, Ser. B 38 48-61 (1976). (1976) Zbl0414.62015MR0652546
  25. Rao, C. R., Linear Statistical Inference and Its Applications, John Wiley & Sons, New York (1965). (1965) Zbl0137.36203MR0221616
  26. Sengupta, D., Singh, H., Nanda, A. K., The proportional reversed hazard model, Technical Report 1999, Indian Statistical Institute, Calcutta. 
  27. Shannon, C. E., 10.1002/j.1538-7305.1948.tb01338.x, Bell Syst. Tech. J. 27 379-423, 623-656 (1948). (1948) Zbl1154.94303MR0026286DOI10.1002/j.1538-7305.1948.tb01338.x
  28. Smitha, S., A Study on the Kerridge's Inaccuracy Measure and Related Concepts, Doctoral Dissertation 2010, CUSAT. 
  29. Taneja, H. C., Kumar, V., Srivastava, R., A dynamic measure of inaccuracy between two residual lifetime distributions, Int. Math. Forum 4 1213-1220 (2009). (2009) Zbl1185.62032MR2545115
  30. Wallis, G., 10.1016/S0893-6080(96)00041-X, Neural Netw. 9 1513-1519 (1996). (1996) DOI10.1016/S0893-6080(96)00041-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.