Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem
Xinlong Feng; Zhifeng Weng; Hehu Xie
Applications of Mathematics (2014)
- Volume: 59, Issue: 6, page 615-630
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFeng, Xinlong, Weng, Zhifeng, and Xie, Hehu. "Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem." Applications of Mathematics 59.6 (2014): 615-630. <http://eudml.org/doc/262046>.
@article{Feng2014,
abstract = {This paper provides an accelerated two-grid stabilized mixed finite element scheme for the Stokes eigenvalue problem based on the pressure projection. With the scheme, the solution of the Stokes eigenvalue problem on a fine grid is reduced to the solution of the Stokes eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. By solving a slightly different linear problem on the fine grid, the new algorithm significantly improves the theoretical error estimate which allows a much coarser mesh to achieve the same asymptotic convergence rate. Finally, numerical experiments are shown to verify the high efficiency and the theoretical results of the new method.},
author = {Feng, Xinlong, Weng, Zhifeng, Xie, Hehu},
journal = {Applications of Mathematics},
keywords = {accelerated two grid method; Stokes eigenvalue problem; stabilized method; equal-order pair; error estimate; accelerated two grid method; Stokes eigenvalue problem; stabilized method; equal-order pair; error estimate; algorithm; convergence; numerical experiments},
language = {eng},
number = {6},
pages = {615-630},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem},
url = {http://eudml.org/doc/262046},
volume = {59},
year = {2014},
}
TY - JOUR
AU - Feng, Xinlong
AU - Weng, Zhifeng
AU - Xie, Hehu
TI - Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 6
SP - 615
EP - 630
AB - This paper provides an accelerated two-grid stabilized mixed finite element scheme for the Stokes eigenvalue problem based on the pressure projection. With the scheme, the solution of the Stokes eigenvalue problem on a fine grid is reduced to the solution of the Stokes eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. By solving a slightly different linear problem on the fine grid, the new algorithm significantly improves the theoretical error estimate which allows a much coarser mesh to achieve the same asymptotic convergence rate. Finally, numerical experiments are shown to verify the high efficiency and the theoretical results of the new method.
LA - eng
KW - accelerated two grid method; Stokes eigenvalue problem; stabilized method; equal-order pair; error estimate; accelerated two grid method; Stokes eigenvalue problem; stabilized method; equal-order pair; error estimate; algorithm; convergence; numerical experiments
UR - http://eudml.org/doc/262046
ER -
References
top- Babuška, I., Osborn, J. E., 10.1090/S0025-5718-1989-0962210-8, Math. Comput. 52 (1989), 275-297. (1989) MR0962210DOI10.1090/S0025-5718-1989-0962210-8
- Babuška, I., Osborn, J., Eigenvalue problems, P. G. Ciarlet, et al. Handbook of Numerical Analysis. Volume II: Finite element methods (Part 1) North-Holland Amsterdam (1991), 641-787. (1991) MR1115240
- Becker, R., Hansbo, P., 10.1002/cnm.1041, Commun. Numer. Methods Eng. 24 (2008), 1421-1430. (2008) Zbl1153.76036MR2474694DOI10.1002/cnm.1041
- Bochev, P. B., Dohrmann, C. R., Gunzburger, M. D., 10.1137/S0036142905444482, SIAM J. Numer. Anal. 44 (2006), 82-101 (electronic). (2006) Zbl1145.76015MR2217373DOI10.1137/S0036142905444482
- Boffi, D., 10.1017/S0962492910000012, Acta Numerica 19 (2010), 1-120. (2010) Zbl1242.65110MR2652780DOI10.1017/S0962492910000012
- Chen, H., He, Y., Li, Y., Xie, H., A multigrid method based on shifted-inverse power technique for eigenvalue problem, http://arxiv.org/pdf/1401.5378v3 (2014). (2014) MR3386235
- Chen, H., Jia, S., Xie, H., 10.1007/s10492-009-0015-7, Appl. Math., Praha 54 (2009), 237-250. (2009) Zbl1212.65431MR2530541DOI10.1007/s10492-009-0015-7
- Chen, H., Jia, S., Xie, H., 10.1016/j.apnum.2010.12.007, Appl. Numer. Math. 61 (2011), 615-629. (2011) Zbl1209.65126MR2754580DOI10.1016/j.apnum.2010.12.007
- Chien, C. S., Jeng, B. W., 10.1137/030602447, SIAM J. Sci. Comput. 27 (2006), 1287-1304. (2006) Zbl1095.65100MR2199749DOI10.1137/030602447
- Ciarlet, P. G., The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978). (1978) Zbl0383.65058MR0520174
- Feng, X., Kim, I., Nam, H., Sheen, D., 10.1016/j.cam.2011.06.009, J. Comput. Appl. Math. 236 (2011), 714-727. (2011) Zbl1233.65088MR2853496DOI10.1016/j.cam.2011.06.009
- Golub, G. H., Loan, C. F. Van, Matrix Computations. (3rd ed.), The Johns Hopkins Univ. Press Baltimore (1996). (1996) MR1417720
- Hackbusch, W., Multi-Grid Methods and Applications, Springer Series in Computational Mathematics 4 Springer, Berlin (1985). (1985) Zbl0595.65106
- Hu, X., Cheng, X., 10.1090/S0025-5718-2011-02458-0, Math. Comput. 80 (2011), 1287-1301. (2011) Zbl1232.65141MR2785459DOI10.1090/S0025-5718-2011-02458-0
- Huang, P., He, Y., Feng, X., Numerical investigations on several stabilized finite element methods for the Stokes eigenvalue problem, Math. Probl. Eng. 2011 (2011), Article ID 745908, 14 pages. (2011) Zbl1235.74286MR2826898
- Huang, P., He, Y., Feng, X., 10.1007/s10483-012-1575-7, Appl. Math. Mech., Engl. Ed. 33 (2012), 621-630. (2012) MR2978223DOI10.1007/s10483-012-1575-7
- Kolman, K., 10.1007/s10255-005-0209-z, Acta Math. Appl. Sin., Engl. Ser. 21 (2005), 1-12. (2005) Zbl1084.65109MR2123599DOI10.1007/s10255-005-0209-z
- Li, J., He, Y., 10.1016/j.cam.2007.02.015, J. Comput. Appl. Math. 214 (2008), 58-65. (2008) Zbl1132.35436MR2391672DOI10.1016/j.cam.2007.02.015
- Li, H., Yang, Y., 10.1016/j.camwa.2013.01.043, Comput. Math. Appl. 65 (2013), 1086-1102. (2013) Zbl1266.65196MR3028637DOI10.1016/j.camwa.2013.01.043
- Lovadina, C., Lyly, M., Stenberg, R., 10.1002/num.20342, Numer. Methods Partial Differ. Equations 25 (2009), 244-257. (2009) Zbl1169.65109MR2473688DOI10.1002/num.20342
- Mercier, B., Osborn, J., Rappaz, J., Raviart, P.-A., 10.1090/S0025-5718-1981-0606505-9, Math. Comput. 36 (1981), 427-453. (1981) Zbl0472.65080MR0606505DOI10.1090/S0025-5718-1981-0606505-9
- Peters, G., Wilkinson, J. H., 10.1137/1021052, SIAM Rev. 21 (1979), 339-360. (1979) MR0535118DOI10.1137/1021052
- Roos, H.-G., Stynes, M., Tobiska, L., Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems. (2nd ed.), Springer Series in Computational Mathematics 24 Springer, Berlin (2008). (2008) Zbl1155.65087MR2454024
- Weng, Z., Feng, X., Zhai, S., 10.1016/j.camwa.2012.07.009, Comput. Math. Appl. 64 (2012), 2635-2646. (2012) Zbl1268.65157MR2970840DOI10.1016/j.camwa.2012.07.009
- Xu, J., 10.1137/0915016, SIAM J. Sci. Comput. 15 (1994), 231-237. (1994) Zbl0795.65077MR1257166DOI10.1137/0915016
- Xu, J., 10.1137/S0036142992232949, SIAM J. Numer. Anal. 33 (1996), 1759-1777. (1996) Zbl0860.65119MR1411848DOI10.1137/S0036142992232949
- Xu, J., Zhou, A., 10.1090/S0025-5718-99-01180-1, Math. Comput. 70 (2001), 17-25. (2001) Zbl0959.65119MR1677419DOI10.1090/S0025-5718-99-01180-1
- Yang, Y., Bi, H., 10.1137/100810241, SIAM J. Numer. Anal. 49 (2011), 1602-1624. (2011) Zbl1236.65143MR2831063DOI10.1137/100810241
- Yang, Y., Fan, X., 10.1007/s11425-009-0016-8, Sci. China, Ser. A 52 (2009), 1955-1972. (2009) Zbl1188.65151MR2545001DOI10.1007/s11425-009-0016-8
- Yin, X., Xie, H., Jia, S., Gao, S., 10.1016/j.cam.2007.03.028, J. Comput. Appl. Math. 215 (2008), 127-141. (2008) Zbl1149.65090MR2400623DOI10.1016/j.cam.2007.03.028
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.