Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem

Xinlong Feng; Zhifeng Weng; Hehu Xie

Applications of Mathematics (2014)

  • Volume: 59, Issue: 6, page 615-630
  • ISSN: 0862-7940

Abstract

top
This paper provides an accelerated two-grid stabilized mixed finite element scheme for the Stokes eigenvalue problem based on the pressure projection. With the scheme, the solution of the Stokes eigenvalue problem on a fine grid is reduced to the solution of the Stokes eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. By solving a slightly different linear problem on the fine grid, the new algorithm significantly improves the theoretical error estimate which allows a much coarser mesh to achieve the same asymptotic convergence rate. Finally, numerical experiments are shown to verify the high efficiency and the theoretical results of the new method.

How to cite

top

Feng, Xinlong, Weng, Zhifeng, and Xie, Hehu. "Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem." Applications of Mathematics 59.6 (2014): 615-630. <http://eudml.org/doc/262046>.

@article{Feng2014,
abstract = {This paper provides an accelerated two-grid stabilized mixed finite element scheme for the Stokes eigenvalue problem based on the pressure projection. With the scheme, the solution of the Stokes eigenvalue problem on a fine grid is reduced to the solution of the Stokes eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. By solving a slightly different linear problem on the fine grid, the new algorithm significantly improves the theoretical error estimate which allows a much coarser mesh to achieve the same asymptotic convergence rate. Finally, numerical experiments are shown to verify the high efficiency and the theoretical results of the new method.},
author = {Feng, Xinlong, Weng, Zhifeng, Xie, Hehu},
journal = {Applications of Mathematics},
keywords = {accelerated two grid method; Stokes eigenvalue problem; stabilized method; equal-order pair; error estimate; accelerated two grid method; Stokes eigenvalue problem; stabilized method; equal-order pair; error estimate; algorithm; convergence; numerical experiments},
language = {eng},
number = {6},
pages = {615-630},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem},
url = {http://eudml.org/doc/262046},
volume = {59},
year = {2014},
}

TY - JOUR
AU - Feng, Xinlong
AU - Weng, Zhifeng
AU - Xie, Hehu
TI - Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 6
SP - 615
EP - 630
AB - This paper provides an accelerated two-grid stabilized mixed finite element scheme for the Stokes eigenvalue problem based on the pressure projection. With the scheme, the solution of the Stokes eigenvalue problem on a fine grid is reduced to the solution of the Stokes eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. By solving a slightly different linear problem on the fine grid, the new algorithm significantly improves the theoretical error estimate which allows a much coarser mesh to achieve the same asymptotic convergence rate. Finally, numerical experiments are shown to verify the high efficiency and the theoretical results of the new method.
LA - eng
KW - accelerated two grid method; Stokes eigenvalue problem; stabilized method; equal-order pair; error estimate; accelerated two grid method; Stokes eigenvalue problem; stabilized method; equal-order pair; error estimate; algorithm; convergence; numerical experiments
UR - http://eudml.org/doc/262046
ER -

References

top
  1. Babuška, I., Osborn, J. E., 10.1090/S0025-5718-1989-0962210-8, Math. Comput. 52 (1989), 275-297. (1989) MR0962210DOI10.1090/S0025-5718-1989-0962210-8
  2. Babuška, I., Osborn, J., Eigenvalue problems, P. G. Ciarlet, et al. Handbook of Numerical Analysis. Volume II: Finite element methods (Part 1) North-Holland Amsterdam (1991), 641-787. (1991) MR1115240
  3. Becker, R., Hansbo, P., 10.1002/cnm.1041, Commun. Numer. Methods Eng. 24 (2008), 1421-1430. (2008) Zbl1153.76036MR2474694DOI10.1002/cnm.1041
  4. Bochev, P. B., Dohrmann, C. R., Gunzburger, M. D., 10.1137/S0036142905444482, SIAM J. Numer. Anal. 44 (2006), 82-101 (electronic). (2006) Zbl1145.76015MR2217373DOI10.1137/S0036142905444482
  5. Boffi, D., 10.1017/S0962492910000012, Acta Numerica 19 (2010), 1-120. (2010) Zbl1242.65110MR2652780DOI10.1017/S0962492910000012
  6. Chen, H., He, Y., Li, Y., Xie, H., A multigrid method based on shifted-inverse power technique for eigenvalue problem, http://arxiv.org/pdf/1401.5378v3 (2014). (2014) MR3386235
  7. Chen, H., Jia, S., Xie, H., 10.1007/s10492-009-0015-7, Appl. Math., Praha 54 (2009), 237-250. (2009) Zbl1212.65431MR2530541DOI10.1007/s10492-009-0015-7
  8. Chen, H., Jia, S., Xie, H., 10.1016/j.apnum.2010.12.007, Appl. Numer. Math. 61 (2011), 615-629. (2011) Zbl1209.65126MR2754580DOI10.1016/j.apnum.2010.12.007
  9. Chien, C. S., Jeng, B. W., 10.1137/030602447, SIAM J. Sci. Comput. 27 (2006), 1287-1304. (2006) Zbl1095.65100MR2199749DOI10.1137/030602447
  10. Ciarlet, P. G., The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978). (1978) Zbl0383.65058MR0520174
  11. Feng, X., Kim, I., Nam, H., Sheen, D., 10.1016/j.cam.2011.06.009, J. Comput. Appl. Math. 236 (2011), 714-727. (2011) Zbl1233.65088MR2853496DOI10.1016/j.cam.2011.06.009
  12. Golub, G. H., Loan, C. F. Van, Matrix Computations. (3rd ed.), The Johns Hopkins Univ. Press Baltimore (1996). (1996) MR1417720
  13. Hackbusch, W., Multi-Grid Methods and Applications, Springer Series in Computational Mathematics 4 Springer, Berlin (1985). (1985) Zbl0595.65106
  14. Hu, X., Cheng, X., 10.1090/S0025-5718-2011-02458-0, Math. Comput. 80 (2011), 1287-1301. (2011) Zbl1232.65141MR2785459DOI10.1090/S0025-5718-2011-02458-0
  15. Huang, P., He, Y., Feng, X., Numerical investigations on several stabilized finite element methods for the Stokes eigenvalue problem, Math. Probl. Eng. 2011 (2011), Article ID 745908, 14 pages. (2011) Zbl1235.74286MR2826898
  16. Huang, P., He, Y., Feng, X., 10.1007/s10483-012-1575-7, Appl. Math. Mech., Engl. Ed. 33 (2012), 621-630. (2012) MR2978223DOI10.1007/s10483-012-1575-7
  17. Kolman, K., 10.1007/s10255-005-0209-z, Acta Math. Appl. Sin., Engl. Ser. 21 (2005), 1-12. (2005) Zbl1084.65109MR2123599DOI10.1007/s10255-005-0209-z
  18. Li, J., He, Y., 10.1016/j.cam.2007.02.015, J. Comput. Appl. Math. 214 (2008), 58-65. (2008) Zbl1132.35436MR2391672DOI10.1016/j.cam.2007.02.015
  19. Li, H., Yang, Y., 10.1016/j.camwa.2013.01.043, Comput. Math. Appl. 65 (2013), 1086-1102. (2013) Zbl1266.65196MR3028637DOI10.1016/j.camwa.2013.01.043
  20. Lovadina, C., Lyly, M., Stenberg, R., 10.1002/num.20342, Numer. Methods Partial Differ. Equations 25 (2009), 244-257. (2009) Zbl1169.65109MR2473688DOI10.1002/num.20342
  21. Mercier, B., Osborn, J., Rappaz, J., Raviart, P.-A., 10.1090/S0025-5718-1981-0606505-9, Math. Comput. 36 (1981), 427-453. (1981) Zbl0472.65080MR0606505DOI10.1090/S0025-5718-1981-0606505-9
  22. Peters, G., Wilkinson, J. H., 10.1137/1021052, SIAM Rev. 21 (1979), 339-360. (1979) MR0535118DOI10.1137/1021052
  23. Roos, H.-G., Stynes, M., Tobiska, L., Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems. (2nd ed.), Springer Series in Computational Mathematics 24 Springer, Berlin (2008). (2008) Zbl1155.65087MR2454024
  24. Weng, Z., Feng, X., Zhai, S., 10.1016/j.camwa.2012.07.009, Comput. Math. Appl. 64 (2012), 2635-2646. (2012) Zbl1268.65157MR2970840DOI10.1016/j.camwa.2012.07.009
  25. Xu, J., 10.1137/0915016, SIAM J. Sci. Comput. 15 (1994), 231-237. (1994) Zbl0795.65077MR1257166DOI10.1137/0915016
  26. Xu, J., 10.1137/S0036142992232949, SIAM J. Numer. Anal. 33 (1996), 1759-1777. (1996) Zbl0860.65119MR1411848DOI10.1137/S0036142992232949
  27. Xu, J., Zhou, A., 10.1090/S0025-5718-99-01180-1, Math. Comput. 70 (2001), 17-25. (2001) Zbl0959.65119MR1677419DOI10.1090/S0025-5718-99-01180-1
  28. Yang, Y., Bi, H., 10.1137/100810241, SIAM J. Numer. Anal. 49 (2011), 1602-1624. (2011) Zbl1236.65143MR2831063DOI10.1137/100810241
  29. Yang, Y., Fan, X., 10.1007/s11425-009-0016-8, Sci. China, Ser. A 52 (2009), 1955-1972. (2009) Zbl1188.65151MR2545001DOI10.1007/s11425-009-0016-8
  30. Yin, X., Xie, H., Jia, S., Gao, S., 10.1016/j.cam.2007.03.028, J. Comput. Appl. Math. 215 (2008), 127-141. (2008) Zbl1149.65090MR2400623DOI10.1016/j.cam.2007.03.028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.