Theoretical analysis of steady state genetic algorithms
Alexandru Agapie; Alden H. Wright
Applications of Mathematics (2014)
- Volume: 59, Issue: 5, page 509-525
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topAgapie, Alexandru, and Wright, Alden H.. "Theoretical analysis of steady state genetic algorithms." Applications of Mathematics 59.5 (2014): 509-525. <http://eudml.org/doc/262048>.
@article{Agapie2014,
abstract = {Evolutionary Algorithms, also known as Genetic Algorithms in a former terminology, are probabilistic algorithms for optimization, which mimic operators from natural selection and genetics. The paper analyses the convergence of the heuristic associated to a special type of Genetic Algorithm, namely the Steady State Genetic Algorithm (SSGA), considered as a discrete-time dynamical system non-generational model. Inspired by the Markov chain results in finite Evolutionary Algorithms, conditions are given under which the SSGA heuristic converges to the population consisting of copies of the best chromosome.},
author = {Agapie, Alexandru, Wright, Alden H.},
journal = {Applications of Mathematics},
keywords = {genetic algorithm; Markov chain; random heuristic search; genetic algorithm; Markov chain; random heuristic search},
language = {eng},
number = {5},
pages = {509-525},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Theoretical analysis of steady state genetic algorithms},
url = {http://eudml.org/doc/262048},
volume = {59},
year = {2014},
}
TY - JOUR
AU - Agapie, Alexandru
AU - Wright, Alden H.
TI - Theoretical analysis of steady state genetic algorithms
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 5
SP - 509
EP - 525
AB - Evolutionary Algorithms, also known as Genetic Algorithms in a former terminology, are probabilistic algorithms for optimization, which mimic operators from natural selection and genetics. The paper analyses the convergence of the heuristic associated to a special type of Genetic Algorithm, namely the Steady State Genetic Algorithm (SSGA), considered as a discrete-time dynamical system non-generational model. Inspired by the Markov chain results in finite Evolutionary Algorithms, conditions are given under which the SSGA heuristic converges to the population consisting of copies of the best chromosome.
LA - eng
KW - genetic algorithm; Markov chain; random heuristic search; genetic algorithm; Markov chain; random heuristic search
UR - http://eudml.org/doc/262048
ER -
References
top- Agapie, A., 10.1007/BFb0056844, Lect. Notes Comput. Sci. 1498 (1998), 3-12. (1998) DOI10.1007/BFb0056844
- Agapie, A., 10.1162/106365601750190370, Evol. Comput. 9 (2001), 127-146. (2001) DOI10.1162/106365601750190370
- Agapie, A., 10.1080/00207160801968788, Int. J. Comput. Math. 87 (2010), 491-508. (2010) Zbl1181.62177MR2598756DOI10.1080/00207160801968788
- Agapie, A., Agapie, M., Rudolph, G., Zbaganu, G., 10.1109/TCYB.2013.2257748, IEEE Trans. Cybern. 43 (2013), 1462-1472. (2013) DOI10.1109/TCYB.2013.2257748
- Agapie, A., Agapie, M., Zbaganu, G., 10.1080/00207721.2011.605963, Int. J. Syst. Sci. 44 (2013), 502-512. (2013) MR3000764DOI10.1080/00207721.2011.605963
- Davis, L., Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York (1991). (1991)
- Mitavskiy, B., Rowe, J., Wright, A. H., Schmitt, L., 10.1007/s10710-007-9038-6, Genet. Program. Evolv. Mach. 9 (2008), 109-123. (2008) DOI10.1007/s10710-007-9038-6
- Rudolph, G., Convergence Properties of Evolutionary Algorithms, Verlag Dr. Kovać, Hamburg (1997). (1997)
- Rudolph, G., 10.1007/978-3-540-92910-9_27, Handbook of Natural Computing G. Rozenberg, T. H. W. Bäck, J. N. Kok Springer, Berlin (2012). (2012) DOI10.1007/978-3-540-92910-9_27
- Syswerda, G., A study of reproduction in generational and steady state genetic algorithms, Foundations of Genetic Algorithms San Mateo, Morgan Kaufman, San Francisco, 1991 94-101.
- Vose, M. D., The Simple Genetic Algorithm. Foundations and Theory, MIT Press Cambridge (1999). (1999) Zbl0952.65048MR1713436
- Whitley, D., The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best, Proceedings of the Third International Conference on Genetic Algorithms Morgan Kaufman San Francisco (1989), 116-123. (1989)
- Wright, A. H., Rowe, J., Continuous dynamical system models of steady-state genetic algorithms, Foundations of Genetic Algorithms---6 Proc. FOGA-6, Morgan Kaufmann Publishers, Orlando (2002), 209-225. (2002) Zbl0987.68094
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.