Spectral radius inequalities for positive commutators

Mirosława Zima

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 1, page 1-10
  • ISSN: 0011-4642

Abstract

top
We establish several inequalities for the spectral radius of a positive commutator of positive operators in a Banach space ordered by a normal and generating cone. The main purpose of this paper is to show that in order to prove the quasi-nilpotency of the commutator we do not have to impose any compactness condition on the operators under consideration. In this way we give a partial answer to the open problem posed in the paper by J. Bračič, R. Drnovšek, Y. B. Farforovskaya, E. L. Rabkin, J. Zemánek (2010). Inequalities involving an arbitrary commutator and a generalized commutator are also discussed.

How to cite

top

Zima, Mirosława. "Spectral radius inequalities for positive commutators." Czechoslovak Mathematical Journal 64.1 (2014): 1-10. <http://eudml.org/doc/262054>.

@article{Zima2014,
abstract = {We establish several inequalities for the spectral radius of a positive commutator of positive operators in a Banach space ordered by a normal and generating cone. The main purpose of this paper is to show that in order to prove the quasi-nilpotency of the commutator we do not have to impose any compactness condition on the operators under consideration. In this way we give a partial answer to the open problem posed in the paper by J. Bračič, R. Drnovšek, Y. B. Farforovskaya, E. L. Rabkin, J. Zemánek (2010). Inequalities involving an arbitrary commutator and a generalized commutator are also discussed.},
author = {Zima, Mirosława},
journal = {Czechoslovak Mathematical Journal},
keywords = {cone; positive operator; commutator; spectral radius; cone; positive operator; commutator; spectral radius},
language = {eng},
number = {1},
pages = {1-10},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Spectral radius inequalities for positive commutators},
url = {http://eudml.org/doc/262054},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Zima, Mirosława
TI - Spectral radius inequalities for positive commutators
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 1
EP - 10
AB - We establish several inequalities for the spectral radius of a positive commutator of positive operators in a Banach space ordered by a normal and generating cone. The main purpose of this paper is to show that in order to prove the quasi-nilpotency of the commutator we do not have to impose any compactness condition on the operators under consideration. In this way we give a partial answer to the open problem posed in the paper by J. Bračič, R. Drnovšek, Y. B. Farforovskaya, E. L. Rabkin, J. Zemánek (2010). Inequalities involving an arbitrary commutator and a generalized commutator are also discussed.
LA - eng
KW - cone; positive operator; commutator; spectral radius; cone; positive operator; commutator; spectral radius
UR - http://eudml.org/doc/262054
ER -

References

top
  1. Bračič, J., Drnovšek, R., Farforovskaya, Y. B., Rabkin, E. L., Zemánek, J., 10.1007/s11117-009-0028-1, Positivity 14 (2010), 431-439. (2010) Zbl1205.47040MR2680506DOI10.1007/s11117-009-0028-1
  2. Daneš, J., On local spectral radius, Čas. Pěst. Mat. 112 (1987), 177-187. (1987) Zbl0645.47002MR0897643
  3. Deimling, K., Nonlinear Functional Analysis, Springer, Berlin (1985). (1985) Zbl0559.47040MR0787404
  4. Drnovšek, R., Kandić, M., 10.1016/j.jmaa.2010.07.056, J. Math. Anal. Appl. 373 (2011), 580-584. (2011) Zbl1205.47041MR2720706DOI10.1016/j.jmaa.2010.07.056
  5. Drnovšek, R., 10.4064/sm211-3-5, Stud. Math. 211 (2012), 241-245. (2012) Zbl1267.47062MR3002445DOI10.4064/sm211-3-5
  6. Esajan, A. R., Estimating the spectrum of sums of positive semi-commuting operators, Sib. Mat. J. 7 374-378 (1966), translation from Sib. Mat. Zh. 7 (1966), 460-464 Russian. (1966) MR0194893
  7. Förster, K.-H., Nagy, B., On the local spectral theory of positive operators, Special Classes of Linear Operators and Other Topics (Conference on operator theory, Bucharest, 1986) 71-81 Birkhäuser, Basel (1988). (1988) Zbl0649.47001MR0942914
  8. Förster, K.-H., Nagy, B., On the local spectral radius of a nonnegative element with respect to an irreducible operator, Acta Sci. Math. (Szeged) 55 (1991), 155-166. (1991) Zbl0757.47002MR1124954
  9. Gao, N., On commuting and semi-commuting positive operators, (to appear) in Proc. Am. Math. Soc., arXiv:1208.3495 [math.FA]. MR3209328
  10. Guo, D., Lakshmikantham, V., Nonlinear Problems in Abstract Cones, Notes and Reports in Mathematics in Science and Engineering 5 Academic Press, Boston (1988). (1988) Zbl0661.47045MR0959889
  11. Kittaneh, F., 10.1090/S0002-9939-05-07796-8, Proc. Am. Math. Soc. (electronic) 134 (2006), 385-390. (2006) Zbl1081.47010MR2176006DOI10.1090/S0002-9939-05-07796-8
  12. Kittaneh, F., 10.1007/s00020-008-1605-6, Integral Equations Oper. Theory 62 (2008), 129-135. (2008) Zbl1195.47008MR2442906DOI10.1007/s00020-008-1605-6
  13. Kittaneh, F., 10.1007/s00209-007-0201-9, Math. Z. 258 (2008), 845-849. (2008) Zbl1139.47009MR2369059DOI10.1007/s00209-007-0201-9
  14. Krasnosel'skiĭ, M. A., Vaĭnikko, G. M., Zabreĭko, P. P., Rutitskii, Ya. B., Stetsenko, V. Ya., Approximate Solution of Operator Equations, Wolters-Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics Wolters-Noordhoff, Groningen (1972). (1972) MR0385655
  15. Laursen, K. B., Neumann, M. M., An Introduction to Local Spectral Theory, London Mathematical Society Monographs. New Series 20 Clarendon Press, Oxford (2000). (2000) Zbl0957.47004MR1747914
  16. Riesz, F., S.-Nagy, B., Functional Analysis, Dover Publications, New York (1990); Reprint of the 1955 orig. publ. by Ungar Publ. Co. MR0071727
  17. Schaefer, H., 10.2140/pjm.1960.10.1009, Pac. J. Math. 10 (1960), 1009-1019. (1960) Zbl0129.08801MR0115090DOI10.2140/pjm.1960.10.1009
  18. Schaefer, H., Banach Lattices and Positive Operators, Die Grundlehren der mathematischen Wissenschaften. Band 215 Springer, Berlin (1974). (1974) Zbl0296.47023MR0423039
  19. Zima, M., 10.1023/A:1022413403733, Czech. Math. J. 49 (1999), 835-841. (1999) Zbl1008.47004MR1746709DOI10.1023/A:1022413403733
  20. Zima, M., 10.1090/S0002-9939-02-06726-6, Proc. Am. Math. Soc. (electronic) 131 (2003), 845-850. (2003) Zbl1055.47006MR1937422DOI10.1090/S0002-9939-02-06726-6
  21. Zima, M., Positive Operators in Banach Spaces and Their Applications, Wydawnictwo Uniwersytetu Rzeszowskiego, Rzeszów (2005). (2005) Zbl1165.47002MR2493071

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.