Spectral radius inequalities for positive commutators
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 1, page 1-10
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZima, Mirosława. "Spectral radius inequalities for positive commutators." Czechoslovak Mathematical Journal 64.1 (2014): 1-10. <http://eudml.org/doc/262054>.
@article{Zima2014,
abstract = {We establish several inequalities for the spectral radius of a positive commutator of positive operators in a Banach space ordered by a normal and generating cone. The main purpose of this paper is to show that in order to prove the quasi-nilpotency of the commutator we do not have to impose any compactness condition on the operators under consideration. In this way we give a partial answer to the open problem posed in the paper by J. Bračič, R. Drnovšek, Y. B. Farforovskaya, E. L. Rabkin, J. Zemánek (2010). Inequalities involving an arbitrary commutator and a generalized commutator are also discussed.},
author = {Zima, Mirosława},
journal = {Czechoslovak Mathematical Journal},
keywords = {cone; positive operator; commutator; spectral radius; cone; positive operator; commutator; spectral radius},
language = {eng},
number = {1},
pages = {1-10},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Spectral radius inequalities for positive commutators},
url = {http://eudml.org/doc/262054},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Zima, Mirosława
TI - Spectral radius inequalities for positive commutators
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 1
EP - 10
AB - We establish several inequalities for the spectral radius of a positive commutator of positive operators in a Banach space ordered by a normal and generating cone. The main purpose of this paper is to show that in order to prove the quasi-nilpotency of the commutator we do not have to impose any compactness condition on the operators under consideration. In this way we give a partial answer to the open problem posed in the paper by J. Bračič, R. Drnovšek, Y. B. Farforovskaya, E. L. Rabkin, J. Zemánek (2010). Inequalities involving an arbitrary commutator and a generalized commutator are also discussed.
LA - eng
KW - cone; positive operator; commutator; spectral radius; cone; positive operator; commutator; spectral radius
UR - http://eudml.org/doc/262054
ER -
References
top- Bračič, J., Drnovšek, R., Farforovskaya, Y. B., Rabkin, E. L., Zemánek, J., 10.1007/s11117-009-0028-1, Positivity 14 (2010), 431-439. (2010) Zbl1205.47040MR2680506DOI10.1007/s11117-009-0028-1
- Daneš, J., On local spectral radius, Čas. Pěst. Mat. 112 (1987), 177-187. (1987) Zbl0645.47002MR0897643
- Deimling, K., Nonlinear Functional Analysis, Springer, Berlin (1985). (1985) Zbl0559.47040MR0787404
- Drnovšek, R., Kandić, M., 10.1016/j.jmaa.2010.07.056, J. Math. Anal. Appl. 373 (2011), 580-584. (2011) Zbl1205.47041MR2720706DOI10.1016/j.jmaa.2010.07.056
- Drnovšek, R., 10.4064/sm211-3-5, Stud. Math. 211 (2012), 241-245. (2012) Zbl1267.47062MR3002445DOI10.4064/sm211-3-5
- Esajan, A. R., Estimating the spectrum of sums of positive semi-commuting operators, Sib. Mat. J. 7 374-378 (1966), translation from Sib. Mat. Zh. 7 (1966), 460-464 Russian. (1966) MR0194893
- Förster, K.-H., Nagy, B., On the local spectral theory of positive operators, Special Classes of Linear Operators and Other Topics (Conference on operator theory, Bucharest, 1986) 71-81 Birkhäuser, Basel (1988). (1988) Zbl0649.47001MR0942914
- Förster, K.-H., Nagy, B., On the local spectral radius of a nonnegative element with respect to an irreducible operator, Acta Sci. Math. (Szeged) 55 (1991), 155-166. (1991) Zbl0757.47002MR1124954
- Gao, N., On commuting and semi-commuting positive operators, (to appear) in Proc. Am. Math. Soc., arXiv:1208.3495 [math.FA]. MR3209328
- Guo, D., Lakshmikantham, V., Nonlinear Problems in Abstract Cones, Notes and Reports in Mathematics in Science and Engineering 5 Academic Press, Boston (1988). (1988) Zbl0661.47045MR0959889
- Kittaneh, F., 10.1090/S0002-9939-05-07796-8, Proc. Am. Math. Soc. (electronic) 134 (2006), 385-390. (2006) Zbl1081.47010MR2176006DOI10.1090/S0002-9939-05-07796-8
- Kittaneh, F., 10.1007/s00020-008-1605-6, Integral Equations Oper. Theory 62 (2008), 129-135. (2008) Zbl1195.47008MR2442906DOI10.1007/s00020-008-1605-6
- Kittaneh, F., 10.1007/s00209-007-0201-9, Math. Z. 258 (2008), 845-849. (2008) Zbl1139.47009MR2369059DOI10.1007/s00209-007-0201-9
- Krasnosel'skiĭ, M. A., Vaĭnikko, G. M., Zabreĭko, P. P., Rutitskii, Ya. B., Stetsenko, V. Ya., Approximate Solution of Operator Equations, Wolters-Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics Wolters-Noordhoff, Groningen (1972). (1972) MR0385655
- Laursen, K. B., Neumann, M. M., An Introduction to Local Spectral Theory, London Mathematical Society Monographs. New Series 20 Clarendon Press, Oxford (2000). (2000) Zbl0957.47004MR1747914
- Riesz, F., S.-Nagy, B., Functional Analysis, Dover Publications, New York (1990); Reprint of the 1955 orig. publ. by Ungar Publ. Co. MR0071727
- Schaefer, H., 10.2140/pjm.1960.10.1009, Pac. J. Math. 10 (1960), 1009-1019. (1960) Zbl0129.08801MR0115090DOI10.2140/pjm.1960.10.1009
- Schaefer, H., Banach Lattices and Positive Operators, Die Grundlehren der mathematischen Wissenschaften. Band 215 Springer, Berlin (1974). (1974) Zbl0296.47023MR0423039
- Zima, M., 10.1023/A:1022413403733, Czech. Math. J. 49 (1999), 835-841. (1999) Zbl1008.47004MR1746709DOI10.1023/A:1022413403733
- Zima, M., 10.1090/S0002-9939-02-06726-6, Proc. Am. Math. Soc. (electronic) 131 (2003), 845-850. (2003) Zbl1055.47006MR1937422DOI10.1090/S0002-9939-02-06726-6
- Zima, M., Positive Operators in Banach Spaces and Their Applications, Wydawnictwo Uniwersytetu Rzeszowskiego, Rzeszów (2005). (2005) Zbl1165.47002MR2493071
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.