Le leggi di bilancio della Meccanica dei Continui secondo la Teoria della Misura

Alessandro Musesti

Bollettino dell'Unione Matematica Italiana (2003)

  • Volume: 6-A, Issue: 2, page 307-309
  • ISSN: 0392-4041

How to cite

top

Musesti, Alessandro. "Le leggi di bilancio della Meccanica dei Continui secondo la Teoria della Misura." Bollettino dell'Unione Matematica Italiana 6-A.2 (2003): 307-309. <http://eudml.org/doc/262070>.

@article{Musesti2003,
abstract = {},
author = {Musesti, Alessandro},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {8},
number = {2},
pages = {307-309},
publisher = {Unione Matematica Italiana},
title = {Le leggi di bilancio della Meccanica dei Continui secondo la Teoria della Misura},
url = {http://eudml.org/doc/262070},
volume = {6-A},
year = {2003},
}

TY - JOUR
AU - Musesti, Alessandro
TI - Le leggi di bilancio della Meccanica dei Continui secondo la Teoria della Misura
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/8//
PB - Unione Matematica Italiana
VL - 6-A
IS - 2
SP - 307
EP - 309
AB -
LA - ita
UR - http://eudml.org/doc/262070
ER -

References

top
  1. DEGIOVANNI, M., MARZOCCHI, A. and MUSESTI, A., Cauchy fluxes associated with tensor fields having divergence measure, Arch. Ration. Mech. Anal., 147 (1999), 197-223. Zbl0933.74007MR1709215DOI10.1007/s002050050149
  2. MARZOCCHI, A. and MUSESTI, A., Decomposition and integral representation of Cauchy interactions associated with measures, Cont. Mech. Thermodyn., 13 (2001), 149-169. Zbl1019.74003MR1857126DOI10.1007/s001610100046
  3. GURTIN, M. E., WILLIAMS, W. O. and ZIEMER, W. P., Geometric measure theory and the axioms of continuum thermodynamics, Arch. Ration. Mech. Anal., 92 (1986), 1-22. Zbl0599.73002MR816619DOI10.1007/BF00250730
  4. NOLL, W., The foundations of classical mechanics in the light of recent advances in continuum mechanics, Proceedings of the Berkeley Symposium on the Axiomatic Method, North-Holland, Amsterdam (1959), 266-281. Zbl0087.39401MR108036
  5. ŠILHAVY, M., Cauchy’s stress theorem and tensor fields with divergences in L p L^{p} , Arch. Ration. Mech. Anal., 116 (1991), 223-255. Zbl0776.73003MR1132761DOI10.1007/BF00375122

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.