Evolutes and isoperimetric deficit in two-dimensional spaces of constant curvature

Julià Cufí; Agustí Reventós

Archivum Mathematicum (2014)

  • Volume: 050, Issue: 4, page 219-236
  • ISSN: 0044-8753

Abstract

top
We relate the total curvature and the isoperimetric deficit of a curve γ in a two-dimensional space of constant curvature with the area enclosed by the evolute of γ . We provide also a Gauss-Bonnet theorem for a special class of evolutes.

How to cite

top

Cufí, Julià, and Reventós, Agustí. "Evolutes and isoperimetric deficit in two-dimensional spaces of constant curvature." Archivum Mathematicum 050.4 (2014): 219-236. <http://eudml.org/doc/262116>.

@article{Cufí2014,
abstract = {We relate the total curvature and the isoperimetric deficit of a curve $\gamma $ in a two-dimensional space of constant curvature with the area enclosed by the evolute of $\gamma $. We provide also a Gauss-Bonnet theorem for a special class of evolutes.},
author = {Cufí, Julià, Reventós, Agustí},
journal = {Archivum Mathematicum},
keywords = {curvature; evolutes; isoperimetric deficit; Gauss-Bonnet; curvature; evolutes; isoperimetric deficit; Gauss-Bonnet},
language = {eng},
number = {4},
pages = {219-236},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Evolutes and isoperimetric deficit in two-dimensional spaces of constant curvature},
url = {http://eudml.org/doc/262116},
volume = {050},
year = {2014},
}

TY - JOUR
AU - Cufí, Julià
AU - Reventós, Agustí
TI - Evolutes and isoperimetric deficit in two-dimensional spaces of constant curvature
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 4
SP - 219
EP - 236
AB - We relate the total curvature and the isoperimetric deficit of a curve $\gamma $ in a two-dimensional space of constant curvature with the area enclosed by the evolute of $\gamma $. We provide also a Gauss-Bonnet theorem for a special class of evolutes.
LA - eng
KW - curvature; evolutes; isoperimetric deficit; Gauss-Bonnet; curvature; evolutes; isoperimetric deficit; Gauss-Bonnet
UR - http://eudml.org/doc/262116
ER -

References

top
  1. Bruna, J., Cufí, J., Complex Analysis, European Mathematical Society, 2013. (2013) MR3076702
  2. Chern, S. S., Curves and surfaces in Euclidean space, Studies in Global Geometry and Analysis 4 (1967), 16–56. (1967) MR0212744
  3. Escudero, C. A., Reventós, A., An interesting property of the evolute, Amer. Math. Monthly 114 (7) (2007), 623–628. (2007) Zbl1144.53007MR2341325
  4. Escudero, C. A., Reventós, A., Solanes, G., 10.2140/pjm.2007.233.309, Pacific J. Math. 233 (2007), 309–320. (2007) Zbl1152.53063MR2366378DOI10.2140/pjm.2007.233.309
  5. Fenchel, W., 10.1090/S0002-9904-1951-09440-9, Bull. Amer. Math. Soc. (N.S.) 57 (1951), 44–54. (1951) Zbl0042.40006MR0040040DOI10.1090/S0002-9904-1951-09440-9
  6. Hurwitz, A., Sur quelques applications géométriques des séries de Fourier, Annales scientifiques de l' É.N.S. 19 (1902), 357–408. (1902) MR1509016
  7. Martinez-Maure, Y., 10.1007/BF02638386, Arch. Math. 79 (2002), 489–498. (2002) Zbl1025.52004MR1967267DOI10.1007/BF02638386
  8. Santaló, L. A., Integral Geometry and Geometric Probability, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976, With a foreword by Mark Kac, Encyclopedia of Mathematics and its Applications, Vol. 1. (1976) Zbl0342.53049MR0433364
  9. Spivak, M., A Comprehensive Introduction to Differential Geometry, Publish or Perish, Inc. Berkeley, 1979, 2a ed., 5 v. (1979) Zbl0439.53005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.