Page 1 Next

Displaying 1 – 20 of 28

Showing per page

Compact hyperbolic tetrahedra with non-obtuse dihedral angles.

Roland K.W. Roeder (2006)

Publicacions Matemàtiques

Given a combinatorial description C of a polyhedron having E edges, the space of dihedral angles of all compact hyperbolic polyhedra that realize C is generally not a convex subset of RE. If C has five or more faces, Andreev's Theorem states that the corresponding space of dihedral angles AC obtained by restricting to non-obtuse angles is a convex polytope. In this paper we explain why Andreev did not consider tetrahedra, the only polyhedra having fewer than five faces, by demonstrating that the...

Hyperideal polyhedra in hyperbolic 3-space

Xiliang Bao, Francis Bonahon (2002)

Bulletin de la Société Mathématique de France

A hyperideal polyhedron is a non-compact polyhedron in the hyperbolic 3 -space 3 which, in the projective model for 3 ℝℙ 3 , is just the intersection of 3 with a projective polyhedron whose vertices are all outside 3 and whose edges all meet 3 . We classify hyperideal polyhedra, up to isometries of 3 , in terms of their combinatorial type and of their dihedral angles.

Nonexpansive retracts in Banach spaces

Eva Kopecká, Simeon Reich (2007)

Banach Center Publications

We study various aspects of nonexpansive retracts and retractions in certain Banach and metric spaces, with special emphasis on the compact nonexpansive envelope property.

Currently displaying 1 – 20 of 28

Page 1 Next