De la Vallée Poussin type inequality and eigenvalue problem for generalized half-linear differential equation
Archivum Mathematicum (2014)
- Volume: 050, Issue: 4, page 193-203
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBáňa, Libor, and Došlý, Ondřej. "De la Vallée Poussin type inequality and eigenvalue problem for generalized half-linear differential equation." Archivum Mathematicum 050.4 (2014): 193-203. <http://eudml.org/doc/262117>.
@article{Báňa2014,
abstract = {We study the generalized half-linear second order differential equation via the associated Riccati type differential equation and Prüfer transformation. We establish a de la Vallée Poussin type inequality for the distance of consecutive zeros of a nontrivial solution and this result we apply to the “classical” half-linear differential equation regarded as a perturbation of the half-linear Euler differential equation with the so-called critical oscillation constant. In the second part of the paper we study a Dirichlet eigenvalue problem associated with the investigated half-linear equation.},
author = {Báňa, Libor, Došlý, Ondřej},
journal = {Archivum Mathematicum},
keywords = {generalized half-linear differential equation; de la Vallée Poussin inequality; half-linear Euler differential equation; Dirichlet eigenvalue problem; generalized half-linear differential equation; de la Vallée Poussin inequality; half-linear Euler differential equation; Dirichlet eigenvalue problem},
language = {eng},
number = {4},
pages = {193-203},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {De la Vallée Poussin type inequality and eigenvalue problem for generalized half-linear differential equation},
url = {http://eudml.org/doc/262117},
volume = {050},
year = {2014},
}
TY - JOUR
AU - Báňa, Libor
AU - Došlý, Ondřej
TI - De la Vallée Poussin type inequality and eigenvalue problem for generalized half-linear differential equation
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 4
SP - 193
EP - 203
AB - We study the generalized half-linear second order differential equation via the associated Riccati type differential equation and Prüfer transformation. We establish a de la Vallée Poussin type inequality for the distance of consecutive zeros of a nontrivial solution and this result we apply to the “classical” half-linear differential equation regarded as a perturbation of the half-linear Euler differential equation with the so-called critical oscillation constant. In the second part of the paper we study a Dirichlet eigenvalue problem associated with the investigated half-linear equation.
LA - eng
KW - generalized half-linear differential equation; de la Vallée Poussin inequality; half-linear Euler differential equation; Dirichlet eigenvalue problem; generalized half-linear differential equation; de la Vallée Poussin inequality; half-linear Euler differential equation; Dirichlet eigenvalue problem
UR - http://eudml.org/doc/262117
ER -
References
top- Agarwal, R.P., Grace, S.R., O’Regan, D., Oscillation Theory of Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, Kluwer Academic Publishers,Dordrecht-Boston-London, 2002. (2002) MR2091751
- Andres, J., On the criterion of de la Vallée Poussin, Publ. Math. Debrecen 45 (1994), 145–152. (1994) MR1291810
- Bihari, I., On the second order half-linear differential equation, Studia Sci. Math. Hungar. 3 (1968), 411–437. (1968) Zbl0167.37403MR0267190
- Bihari, I., 10.1007/BF02082686, Period. Math. Hungar. (1976), 117–125. (1976) MR0437847DOI10.1007/BF02082686
- Bognár, G., Došlý, O., 10.5486/PMD.2013.5374, Publ. Math. Debrecen 82 (2013), 451–459. (2013) Zbl1299.34122MR3034358DOI10.5486/PMD.2013.5374
- Cohn, J.H.E., 10.1093/qmath/39.2.173, Quart. J. Math. Oxford Ser. (2) 39 (159) (1988), 173–174. (1988) Zbl0668.34036MR0947498DOI10.1093/qmath/39.2.173
- de Vallée Poussin, Ch., Sur l’équation différentielle linéqire du second order. Détermination d’une intégrale par deux valuers assignés. Extension aux équasions d’ordre , J. Math. Pures Appl. (8) (1929), 125–144. (1929)
- Došlý, O., Fišnarová, S., 10.1016/j.na.2010.07.049, Nonlinear Anal. 73 (2010), 3756–3766. (2010) Zbl1207.34041MR2728552DOI10.1016/j.na.2010.07.049
- Došlý, O., Funková, H., Perturbations of half-linear Euler differential equation and transformations of modified Riccati equation, Abstr. Appl. Anal. 2012 (2012), 19pp. (2012) Zbl1296.34081MR2991019
- Došlý, O., Lomtatidze, A., Disconjugacy and disfocality criteria for singular half-linearsecond order differential equations, Ann. Polon. Math. 72 (1999), 273–284. (1999) MR1738580
- Došlý, O., Řehák, P., Half-Linear Differential Equations, North Holland Mathematics Studies 202, Elsevier, Amsterdam, 2005. (2005) MR2158903
- Došlý, O., Řezníčková, J., Conjugacy and principal solution of generalized half-linear second order differential equations, Electron. J. Qual. Theory Differ. Equ., Proc.9th Coll. QTDE 2012 (5) (2012), 1–13. (2012) MR3338524
- Došlý, O., Ünal, M., 10.1007/s10474-007-7120-4, Acta Math. Hungar. 120 (2008), 147–163. (2008) MR2431365DOI10.1007/s10474-007-7120-4
- Došlý, O., Yamaoka, N., Oscillation constants for second-order ordinary differential equations related to elliptic equations with -Laplacian, Nonlinear Anal. 113 (2015), 115–136. (2015) MR3281849
- Elber, Á., Kusano, T., On differential equation , Hiroshima Math. J. 22 (1992), 203–218. (1992) MR1160048
- Elbert, Á., A half-linear second order differential equation, Colloq. Math. Soc. János Bolyai 30 (1979), 153–180. (1979) MR0680591
- Elbert, Á., Generalized Riccati equation for half-linear second order differentia lequations, Colloq. Math. Soc. János Bolyai 47 (1984), 227–249. (1984) MR0890544
- Elbert, Á., Schneider, A., 10.1007/BF03322512, Result. Math. 37 (2000), 56–83. (2000) Zbl0958.34029MR1742294DOI10.1007/BF03322512
- Fišnarová, S., Mařík, R., 10.1016/j.na.2011.06.025, Nonlinear Anal. 74 (2011), 6427–6433. (2011) Zbl1229.34048MR2833426DOI10.1016/j.na.2011.06.025
- Fišnarová, S., Mařík, R., Local estimates for modified Riccati equation in theory of half-linear differential equation, Electron. J. Qual. Theory Differ. Equ. 2012 (63) (2012), 15 pp. (2012) MR2966805
- Harris, B.J., On the oscillation criterion of Cohn, Quart. J. Math. Oxford Ser. (2) 42 (167) (1988), 309–9313. (1988) MR1120991
- Hartman, P., Wintner, A., On an oscillation criterion of De la Vallée Poussin, Quart. Appl. Math. 13 (1955), 330–332. (1955) Zbl0066.06404MR0073773
- Jaroš, J., Kusano, T., Tanigawa, T., 10.1016/j.na.2005.05.045, Nonlinear Anal. 64 (2006), 762–787. (2006) MR2197094DOI10.1016/j.na.2005.05.045
- Kiguradze, I., Půža, B., On the Vallée-Poussin problem for singular differential equations with deviating arguments, Arch. Math. (Brno) 33 (1–2) (1997), 127–138. (1997) Zbl0914.34064MR1464307
- Kusano, T., Manojlović, J., Tanigawa, T., 10.1016/j.camwa.2009.06.039, Comput. Math. Appl. 59 (2010), 411–425. (2010) Zbl1189.34121MR2575528DOI10.1016/j.camwa.2009.06.039
- Willet, D., 10.4153/CMB-1971-073-3, Canad. Math. Bull 14 (1971), 419–430. (1971) DOI10.4153/CMB-1971-073-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.