On the Vallée-Poussin problem for singular differential equations with deviating arguments

Ivan Kiguradze; Bedřich Půža

Archivum Mathematicum (1997)

  • Volume: 033, Issue: 1-2, page 127-138
  • ISSN: 0044-8753

Abstract

top
For the differential equation u ( n ) ( t ) = f ( t , u ( τ 1 ( t ) ) , , u ( n - 1 ) ( τ n ( t ) ) ) , where the vector function f : ] a , b [ × R k n R k has nonintegrable singularities with respect to the first argument, sufficient conditions for existence and uniqueness of the Vallée–Poussin problem are established.

How to cite

top

Kiguradze, Ivan, and Půža, Bedřich. "On the Vallée-Poussin problem for singular differential equations with deviating arguments." Archivum Mathematicum 033.1-2 (1997): 127-138. <http://eudml.org/doc/248017>.

@article{Kiguradze1997,
abstract = {For the differential equation \[ u^\{(n)\}(t)= f(t,u(\tau \_\{1\}(t)),\dots ,u^\{(n-1)\}(\tau \_\{n\}(t))), \] where the vector function $ f:\ ]a,b[\,\times \{R\}^\{kn\} \rightarrow \{R\}^\{k\}$ has nonintegrable singularities with respect to the first argument, sufficient conditions for existence and uniqueness of the Vallée–Poussin problem are established.},
author = {Kiguradze, Ivan, Půža, Bedřich},
journal = {Archivum Mathematicum},
keywords = {singular differential equation with deviating arguments; the Valée-Poussin problem; existence theorem; uniqueness theorem; singular differential equations with deviating arguments; Valée-Poussin problem; existence; uniqueness},
language = {eng},
number = {1-2},
pages = {127-138},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the Vallée-Poussin problem for singular differential equations with deviating arguments},
url = {http://eudml.org/doc/248017},
volume = {033},
year = {1997},
}

TY - JOUR
AU - Kiguradze, Ivan
AU - Půža, Bedřich
TI - On the Vallée-Poussin problem for singular differential equations with deviating arguments
JO - Archivum Mathematicum
PY - 1997
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 033
IS - 1-2
SP - 127
EP - 138
AB - For the differential equation \[ u^{(n)}(t)= f(t,u(\tau _{1}(t)),\dots ,u^{(n-1)}(\tau _{n}(t))), \] where the vector function $ f:\ ]a,b[\,\times {R}^{kn} \rightarrow {R}^{k}$ has nonintegrable singularities with respect to the first argument, sufficient conditions for existence and uniqueness of the Vallée–Poussin problem are established.
LA - eng
KW - singular differential equation with deviating arguments; the Valée-Poussin problem; existence theorem; uniqueness theorem; singular differential equations with deviating arguments; Valée-Poussin problem; existence; uniqueness
UR - http://eudml.org/doc/248017
ER -

References

top
  1. On existence and uniqueness of solutions of multipoint Vallée-Poussin problem for nonlinear differential equaitions, Differentsial’nyje Uravnenija 6, No 2 (1970), 298-310 (in Russian). MR0267183
  2. Sur l’equation differentielle lineaire de second ordre. Détermination d’une integrale par deux valeurs assignées. Extension aux équations d’ordre n , J. Math. pures et appl. 8, No 2 (1929), 125-144. 
  3. On a singular multi-point boundary value problem, Ann. Mat. Pura ed Appl. 86(1970), 367-399. Zbl0251.34012MR0271449
  4. Some singular boundary value problems for ordinary differential equations, Tbilisi: Tbilisi University Press (1975) (in Russian). Zbl0521.34019MR0499402
  5. On some singular boundary value problems for ordinary differential equations, Equadiff 5 Proc. 5 Czech. Conf. Diff. Equations and Appl. Leipzig: Teubner Verlagsgesselschaft (1982), 174-178. Zbl0521.34019
  6. On the solvability of the Valée-Poussin problem, Differentsial’nyje Uravnenija 21, No 3 (1985), 391-398. MR0785447
  7. On a boundary value problems for higher ordinary differential equations with singularities, Uspekhi Mat. Nauk 41, No. 4 (1986), 166-167 (in Russian). 
  8. On the two-point boundary value problems for systems of higher order ordinary differential equations with singularities, Georgian Math. J. 1, No 1(1994), 31-45. 
  9. L’existence et l’unicité des solutions du probléme d’interpolation differentielle ordinaire d’ordre n , Ann. Polon. Math. 15, No 3(1964), 253-271. MR0173804
  10. Nonoscillatory solutions of equation x ( n ) + p 1 ( t ) x ( n - 1 ) + + p n ( t ) x = 0 , Uspekhi Mat. Nauk 24, No 2(1969), 43-96 (in Russian). 
  11. On a multi-point boundary value problem, Nauchnie Dokl. Vis. Shkoli 5 (1958), 34-37 (in Russian). 
  12. Linear problems for systems of nonlinear differential equations, J. Diff. Equat. 3, No 4(1967), 580-594. Zbl0161.06102MR0216068
  13. Equazioni Differenzialli nel campo reale, Bologna: Zanichelli (1948). MR0026731
  14. On a multipoint boundary value problem for nonlinear ordinary differential equations with singularities, Arch. Math. 30, No 3(1994), 171-206. MR1308353

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.