On generalized partial twisted smash products
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 3, page 767-782
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGuo, Shuangjian. "On generalized partial twisted smash products." Czechoslovak Mathematical Journal 64.3 (2014): 767-782. <http://eudml.org/doc/262133>.
@article{Guo2014,
abstract = {We first introduce the notion of a right generalized partial smash product and explore some properties of such partial smash product, and consider some examples. Furthermore, we introduce the notion of a generalized partial twisted smash product and discuss a necessary condition under which such partial smash product forms a Hopf algebra. Based on these notions and properties, we construct a Morita context for partial coactions of a co-Frobenius Hopf algebra.},
author = {Guo, Shuangjian},
journal = {Czechoslovak Mathematical Journal},
keywords = {partial bicomodule algebra; partial twisted smash product; partial bicoinvariant; Morita context; Hopf algebras; partial bicomodule algebras; generalized partial smash products; partial twisted smash products; partial bicoinvariants; Morita contexts; partial actions; partial coactions; partial Hopf actions; partial Hopf coactions; partial entwining structures},
language = {eng},
number = {3},
pages = {767-782},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On generalized partial twisted smash products},
url = {http://eudml.org/doc/262133},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Guo, Shuangjian
TI - On generalized partial twisted smash products
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 3
SP - 767
EP - 782
AB - We first introduce the notion of a right generalized partial smash product and explore some properties of such partial smash product, and consider some examples. Furthermore, we introduce the notion of a generalized partial twisted smash product and discuss a necessary condition under which such partial smash product forms a Hopf algebra. Based on these notions and properties, we construct a Morita context for partial coactions of a co-Frobenius Hopf algebra.
LA - eng
KW - partial bicomodule algebra; partial twisted smash product; partial bicoinvariant; Morita context; Hopf algebras; partial bicomodule algebras; generalized partial smash products; partial twisted smash products; partial bicoinvariants; Morita contexts; partial actions; partial coactions; partial Hopf actions; partial Hopf coactions; partial entwining structures
UR - http://eudml.org/doc/262133
ER -
References
top- Alves, M. M. S., Batista, E., 10.1080/00927870903095582, Commun. Algebra 38 (2010), 2872-2902. (2010) Zbl1226.16022MR2730285DOI10.1080/00927870903095582
- Alves, M. M. S., Batista, E., 10.1090/conm/537/10564, Groups, Algebras and Applications. Proceedings of XVIII Latin American algebra colloquium, São Pedro, Brazil, 2009 C. Polcino Milies Contemporary Mathematics 537 American Mathematical Society, Providence (2011), 13-30. (2011) Zbl1232.16020MR2799089DOI10.1090/conm/537/10564
- Alves, M. M. S., Batista, E., Partial Hopf actions, partial invariants and a Morita context, Algebra Discrete Math. 2009 (2009), 1-19. (2009) Zbl1199.16059MR2640384
- Beattie, M., Dăscălescu, S., Raianu, Ş., 10.1006/jabr.1997.7146, J. Algebra 198 (1997), 164-183. (1997) Zbl0901.16017MR1482980DOI10.1006/jabr.1997.7146
- Caenepeel, S., Janssen, K., 10.1080/00927870802110334, Commun. Algebra 36 (2008), 2923-2946. (2008) Zbl1168.16021MR2440292DOI10.1080/00927870802110334
- Dokuchaev, M., Exel, R., 10.1090/S0002-9947-04-03519-6, Trans. Am. Math. Soc. 357 (2005), 1931-1952. (2005) Zbl1072.16025MR2115083DOI10.1090/S0002-9947-04-03519-6
- Dokuchaev, M., Ferrero, M., Paques, A., 10.1016/j.jpaa.2005.11.009, J. Pure Appl. Algebra 208 (2007), 77-87. (2007) Zbl1142.13005MR2269829DOI10.1016/j.jpaa.2005.11.009
- Exel, R., 10.1006/jfan.1994.1073, J. Funct. Anal. 122 (1994), 361-401. (1994) MR1276163DOI10.1006/jfan.1994.1073
- Lomp, C., Duality for partial group actions, Int. Electron. J. Algebra (electronic only) 4 (2008), 53-62. (2008) Zbl1175.16020MR2417468
- Sweedler, M. E., Hopf Algebras, Mathematics Lecture Note Series W. A. Benjamin, New York (1969). (1969) Zbl0203.31601MR0252485
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.