Page 1 Next

Displaying 1 – 20 of 21

Showing per page

Classifying bicrossed products of two Sweedler's Hopf algebras

Costel-Gabriel Bontea (2014)

Czechoslovak Mathematical Journal

We continue the study started recently by Agore, Bontea and Militaru in “Classifying bicrossed products of Hopf algebras” (2014), by describing and classifying all Hopf algebras E that factorize through two Sweedler’s Hopf algebras. Equivalently, we classify all bicrossed products H 4 H 4 . There are three steps in our approach. First, we explicitly describe the set of all matched pairs ( H 4 , H 4 , , ) by proving that, with the exception of the trivial pair, this set is parameterized by the ground field k . Then, for...

Coalgebraic Approach to the Loday Infinity Category, Stem Differential for 2 n -ary Graded and Homotopy Algebras

Mourad Ammar, Norbert Poncin (2010)

Annales de l’institut Fourier

We define a graded twisted-coassociative coproduct on the tensor algebra the desuspension space of a graded vector space V . The coderivations (resp. quadratic “degree 1” codifferentials, arbitrary odd codifferentials) of this coalgebra are 1-to-1 with sequences of multilinear maps on V (resp. graded Loday structures on V , sequences that we call Loday infinity structures on V ). We prove a minimal model theorem for Loday infinity algebras and observe that the Lod category contains the L category as...

Deformed commutators on comodule algebras over coquasitriangular Hopf algebras

Zhongwei Wang, Guoyin Zhang, Liangyun Zhang (2015)

Colloquium Mathematicae

We construct quantum commutators on comodule algebras over coquasitriangular Hopf algebras, so that they are quantum group coinvariant and have the generalized antisymmetry and Leibniz properties. If the coquasitriangular Hopf algebra is additionally cotriangular, then the quantum commutators satisfy a generalized Jacobi identity, and turn the comodule algebra into a quantum Lie algebra. Moreover, we investigate the projective and injective dimensions of some Doi-Hopf modules over a quantum commutative...

Galois H-objects with a normal basis in closed categories. A cohomological interpretation.

José N. Alonso Alvarez, José Manuel Fernández Vilaboa (1993)

Publicacions Matemàtiques

In this paper, for a cocommutative Hopf algebra H in a symmetric closed category C with basic object K, we get an isomorphism between the group of isomorphism classes of Galois H-objects with a normal basis and the second cohomology group H2(H,K) of H with coefficients in K. Using this result, we obtain a direct sum decomposition for the Brauer group of H-module Azumaya monoids with inner action:BMinn(C,H) ≅ B(C) ⊕ H2(H,K)In particular, if C is the symmetric closed category of C-modules with K a...

Groupes de renormalisation pour deux algèbres de Hopf en produit semi-direct

Mohamed Belhaj Mohamed (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Nous considérons deux algèbres de Hopf graduées connexes en interaction, l’une étant un comodule-cogèbre sur l’autre. Nous montrons comment définir l’analogue du groupe de renormalisation et de la fonction Bêta de Connes-Kreimer lorsque la bidérivation de graduation est remplacée par une bidérivation provenant d’un caractère infinitésimal de la deuxième algèbre de Hopf.

Incidence coalgebras of interval finite posets of tame comodule type

Zbigniew Leszczyński, Daniel Simson (2015)

Colloquium Mathematicae

The incidence coalgebras K I of interval finite posets I and their comodules are studied by means of the reduced Euler integral quadratic form q : ( I ) , where K is an algebraically closed field. It is shown that for any such coalgebra the tameness of the category K I - c o m o d of finite-dimensional left K I -modules is equivalent to the tameness of the category K I - C o m o d f c of finitely copresented left K I -modules. Hence, the tame-wild dichotomy for the coalgebras K I is deduced. Moreover, we prove that for an interval finite ̃ *ₘ-free...

Les ( a , b ) -algèbres à homotopie près

Walid Aloulou (2010)

Annales mathématiques Blaise Pascal

On étudie dans cet article les notions d’algèbre à homotopie près pour une structure définie par deux opérations . et [ , ] . Ayant déterminé la structure des G algèbres et des P algèbres, on généralise cette construction et on définit la stucture des ( a , b ) -algèbres à homotopie près. Etant donnée une structure d’algèbre commutative et de Lie différentielle graduée pour deux décalages des degrés donnés par a et b , on donnera une construction explicite de l’algèbre à homotopie près associée et on précisera...

Monomorphisms of coalgebras

A. L. Agore (2010)

Colloquium Mathematicae

We prove new necessary and sufficient conditions for a morphism of coalgebras to be a monomorphism, different from the ones already available in the literature. More precisely, φ: C → D is a monomorphism of coalgebras if and only if the first cohomology groups of the coalgebras C and D coincide if and only if i I ε ( a i ) b i = i I a i ε ( b i ) for all i I a i b i C D C . In particular, necessary and sufficient conditions for a Hopf algebra map to be a monomorphism are given.

On generalized partial twisted smash products

Shuangjian Guo (2014)

Czechoslovak Mathematical Journal

We first introduce the notion of a right generalized partial smash product and explore some properties of such partial smash product, and consider some examples. Furthermore, we introduce the notion of a generalized partial twisted smash product and discuss a necessary condition under which such partial smash product forms a Hopf algebra. Based on these notions and properties, we construct a Morita context for partial coactions of a co-Frobenius Hopf algebra.

Quasitriangular Hopf group algebras and braided monoidal categories

Shiyin Zhao, Jing Wang, Hui-Xiang Chen (2014)

Czechoslovak Mathematical Journal

Let π be a group, and H be a semi-Hopf π -algebra. We first show that the category H of left π -modules over H is a monoidal category with a suitably defined tensor product and each element α in π induces a strict monoidal functor F α from H to itself. Then we introduce the concept of quasitriangular semi-Hopf π -algebra, and show that a semi-Hopf π -algebra H is quasitriangular if and only if the category H is a braided monoidal category and F α is a strict braided monoidal functor for any α π . Finally,...

Ringel-Hall algebras of hereditary pure semisimple coalgebras

Justyna Kosakowska (2009)

Colloquium Mathematicae

We define and investigate Ringel-Hall algebras of coalgebras (usually infinite-dimensional). We extend Ringel's results [Banach Center Publ. 26 (1990) and Adv. Math. 84 (1990)] from finite-dimensional algebras to infinite-dimensional coalgebras.

Serre Theorem for involutory Hopf algebras

Gigel Militaru (2010)

Open Mathematics

We call a monoidal category C a Serre category if for any C, D ∈ C such that C ⊗ D is semisimple, C and D are semisimple objects in C. Let H be an involutory Hopf algebra, M, N two H-(co)modules such that M ⊗ N is (co)semisimple as a H-(co)module. If N (resp. M) is a finitely generated projective k-module with invertible Hattory-Stallings rank in k then M (resp. N) is (co)semisimple as a H-(co)module. In particular, the full subcategory of all finite dimensional modules, comodules or Yetter-Drinfel’d...

The affineness criterion for quantum Hom-Yetter-Drinfel'd modules

Shuangjian Guo, Shengxiang Wang (2016)

Colloquium Mathematicae

Quantum integrals associated to quantum Hom-Yetter-Drinfel’d modules are defined, and the affineness criterion for quantum Hom-Yetter-Drinfel’d modules is proved in the following form. Let (H,α) be a monoidal Hom-Hopf algebra, (A,β) an (H,α)-Hom-bicomodule algebra and B = A c o H . Under the assumption that there exists a total quantum integral γ: H → Hom(H,A) and the canonical map β : A B A A H , a B b S - 1 ( b [ 1 ] ) α ( b [ 0 ] [ - 1 ] ) β - 1 ( a ) β ( b [ 0 ] [ 0 ] ) , is surjective, we prove that the induction functor A B - : ̃ ( k ) B A H is an equivalence of categories.

Currently displaying 1 – 20 of 21

Page 1 Next