Optimization of Parameters in the Menzerath–Altmann Law, II
Ján Andres; Martina Benešová; Martina Chvosteková; Eva Fišerová
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)
- Volume: 53, Issue: 2, page 5-28
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topAndres, Ján, et al. "Optimization of Parameters in the Menzerath–Altmann Law, II." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53.2 (2014): 5-28. <http://eudml.org/doc/262150>.
@article{Andres2014,
abstract = {The paper continues our studies released under the same title [Andres, J., Kubáček, L., Machalová, J., Tučková, M.: Optimization of parameters in the Menzerath–Altmann law Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 51, 1 (2012), 5–27.]. As the main result justifying the conclusions in [Andres, J., Kubáček, L., Machalová, J., Tučková, M.: Optimization of parameters in the Menzerath–Altmann law Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 51, 1 (2012), 5–27.], the theorem is presented enunciating that the English original of Poe’s celebrated poem Raven is a language fractal only w.r.t. the application of the simplest truncated formulas of the Menzerath–Altmann law, but not w.r.t. other applied formulas under our consideration. Moreover, the related degree of semanticity is calculated in these cases, including the naive intervals of such a degree. A suitability of the applied formulas is discussed from the point of view of a verbal version of the Menzerath–Altmann law (i.e. the tendency of the approximating functions is to be decreasing) and by means of quantitative criteria characterizing the accuracy of fitted data. Our discussion extends the traditional approaches to the Menzerath–Altmann law.},
author = {Andres, Ján, Benešová, Martina, Chvosteková, Martina, Fišerová, Eva},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Menzerath–Altmann law; fractal analysis; accuracy of data approximations; accuracy of shape parameter estimates; optimal usage of formulas; Menzerath-Altmann law; fractal analysis; accuracy of data approximations; accuracy of shape parameter estimates; optimal usage of formulas},
language = {eng},
number = {2},
pages = {5-28},
publisher = {Palacký University Olomouc},
title = {Optimization of Parameters in the Menzerath–Altmann Law, II},
url = {http://eudml.org/doc/262150},
volume = {53},
year = {2014},
}
TY - JOUR
AU - Andres, Ján
AU - Benešová, Martina
AU - Chvosteková, Martina
AU - Fišerová, Eva
TI - Optimization of Parameters in the Menzerath–Altmann Law, II
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2014
PB - Palacký University Olomouc
VL - 53
IS - 2
SP - 5
EP - 28
AB - The paper continues our studies released under the same title [Andres, J., Kubáček, L., Machalová, J., Tučková, M.: Optimization of parameters in the Menzerath–Altmann law Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 51, 1 (2012), 5–27.]. As the main result justifying the conclusions in [Andres, J., Kubáček, L., Machalová, J., Tučková, M.: Optimization of parameters in the Menzerath–Altmann law Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 51, 1 (2012), 5–27.], the theorem is presented enunciating that the English original of Poe’s celebrated poem Raven is a language fractal only w.r.t. the application of the simplest truncated formulas of the Menzerath–Altmann law, but not w.r.t. other applied formulas under our consideration. Moreover, the related degree of semanticity is calculated in these cases, including the naive intervals of such a degree. A suitability of the applied formulas is discussed from the point of view of a verbal version of the Menzerath–Altmann law (i.e. the tendency of the approximating functions is to be decreasing) and by means of quantitative criteria characterizing the accuracy of fitted data. Our discussion extends the traditional approaches to the Menzerath–Altmann law.
LA - eng
KW - Menzerath–Altmann law; fractal analysis; accuracy of data approximations; accuracy of shape parameter estimates; optimal usage of formulas; Menzerath-Altmann law; fractal analysis; accuracy of data approximations; accuracy of shape parameter estimates; optimal usage of formulas
UR - http://eudml.org/doc/262150
ER -
References
top- Altmann, G., Prolegomena to Menzerath’s law, Glottometrika 2 (1980), 1–10. (1980)
- Altmann, G., Schwibbe, M. H., Das Menzerathsche Gesetz in informations – verarbeitenden Systemen, Olms, Hildesheim, 1989. (1989)
- Andres, J., The Moran–Hutchinson formula in terms of Menzerath–Altmann’s law and Zipf–Mandelbrot’s law, In: Altmann, G., Čech, R., Mačutek, J., Uhlířová, L. (eds.): Empirical Approaches to Text and Language Analysis. Studies in Quantitative Linguistics 17, RAM-Verlag, Lüdenscheid, 2014, 29–44. (2014)
- Andres, J., Kubáček, L., Machalová, J., Tučková, M., Optimization of parameters in the Menzerath–Altmann law, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 51, 1 (2012), 5–27. (2012) Zbl1275.91115MR3060005
- Andres, J., 10.1515/glot-2009-0015, Glottotheory 2, 2 (2009), 1–14. (2009) DOI10.1515/glot-2009-0015
- Andres, J., 10.1080/09296171003643189, Journal of Quantitative Linguistics 17, 2 (2010), 101–122. (2010) DOI10.1080/09296171003643189
- Andres, J., Benešová, M., Fractal analysis of Poe’s Raven, Glottometrics 21 (2011), 73–98. (2011)
- Andres, J., Benešová, M., 10.1080/09296174.2012.714538, Journal of Quantitative Linguistics 19, 4 (2012), 301–324. (2012) DOI10.1080/09296174.2012.714538
- Andres, J., Benešová, M., Kubáček, L., Vrbková, J., 10.1080/09296174.2011.608604, Journal of Quantitative Linguistics 19, 1 (2012), 1–31. (2012) DOI10.1080/09296174.2011.608604
- Chatterjee, S., Hadi, A. S., Regression Analysis by Example, John Wiley & Sons, Inc., Hoboken, New Jersey, 2006. (2006) Zbl1250.62035
- Cramer, I., 10.1080/09296170500055301, Journal of Quantitative Linguistics 12, 1 (2005), 41–52. (2005) DOI10.1080/09296170500055301
- Eisenhauer, J. G., 10.1111/1467-9639.00136, Teaching Statistics. 25 (2003), 76–80. (2003) DOI10.1111/1467-9639.00136
- Efron, B., Tibshirani, R. J., An Introduction to the Bootstrap, Chapman & Hall/CRC, Boca Raton, New York, 1993. (1993) Zbl0835.62038MR1270903
- Hřebíček, L., The constants of Menzerath–Altmann’s law, Glottometrika. 12 (1990), 61–71. (1990)
- Hřebíček, L., Text Levels. Language Constructs, Constituents and the Menzerath–Altmann Law, Wissenschaftlicher Verlag Trier, Trier, 1995. (1995)
- Hřebíček, L., Lectures on Text Theory, The Academy of the Sciences of the Czech Republic (Oriental Institute), Prague, 1997. (1997)
- Köhler, R., Das Menzerathsche Gesetz auf Satzebene, Glottometrika 4 (1982), 103–113. (1982)
- Köhler, R., Zur Interpretation des Menzerathschen Gesetzes, Glottometrika 6 (1984), 177–183. (1984)
- Köhler, R., Das Menzerathsche Gesetz als Resultat des Sprachverarbeitungsmechanismus, In: Altmann, G., Schwibbe, M. H. (eds.): Das Menzerathsche Gesetz in informations – verarbeitenden Systemen. Olms, Hildesheim, 1989, 108–116. (1989)
- Kulacka, A., 10.1080/09296174.2010.512160, Journal of Quantitative Linguistics 17, 4 (2010), 257–268. (2010) DOI10.1080/09296174.2010.512160
- Kulacka, A., Mačutek, J., 10.1080/09296170600850585, Journal of Quantitative Linguistics 14, 1 (2007), 23–32. (2007) DOI10.1080/09296170600850585
- Montgomery, D. C., Peck, E. A., Vinig, G. G., Introduction to Linear Regression Analysis, John Wiley & Sons, Inc., Hoboken, New Jersey, 2006. (2006) MR1158462
- Prün, C., 10.1080/09296179408590009, Journal of Quantitative Linguistics 1, 2 (1994), 148–155. (1994) DOI10.1080/09296179408590009
- Thode, H. C., Testing for Normality, Marcel Dekker, New York, 2002. (2002) Zbl1032.62040MR1989476
- White, H., 10.2307/1912934, Econometrica 48, 4 (1980), 817–838. (1980) Zbl0459.62051MR0575027DOI10.2307/1912934
- Wimmer, G., Altmann, G., Unified derivation of some linguistic laws, In: Köhler, R., Altmann, G., Piotrowski, R. G. (eds.): Quantitative Linquistics. An International Handbook. De Gruyter, Berlin, 2005, 791–807. (2005)
- Wimmer, G., Altmann, G., Hřebíček, L., Ondrejovič, S., Wimmerová, S., Introduction to the Analysis of Texts, Veda, Bratislava, 2003, (in Slovak). (2003)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.