Finite groups whose set of numbers of subgroups of possible order has exactly 2 elements
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 3, page 827-831
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- Bhowmik, G., 10.4064/aa-74-2-155-159, Acta Arith. 74 (1996), 155-159. (1996) Zbl0848.15015MR1373705DOI10.4064/aa-74-2-155-159
- Guo, W. B., Finite groups with given normalizers of Sylow subgroups. II, Acta Math. Sin. 39 Chinese (1996), 509-513. (1996) Zbl0862.20014MR1418684
- M. Hall, Jr., The Theory of Groups, Macmillan Company, New York (1959). (1959) Zbl0084.02202MR0103215
- Huppert, B., Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134 Springer, Berlin German (1967). (1967) Zbl0217.07201MR0224703
- Qu, H., Sun, Y., Zhang, Q., 10.1007/s11401-010-0590-7, Chin. Ann. Math., Ser. B 31 (2010), 497-506. (2010) Zbl1216.20014MR2672246DOI10.1007/s11401-010-0590-7
- Shao, C., Shi, W., Jiang, Q., 10.1007/s11464-008-0025-x, Front. Math. China 3 (2008), 355-370. (2008) Zbl1165.20020MR2425160DOI10.1007/s11464-008-0025-x
- Tang, F., Finite groups with exactly two conjugacy class sizes of subgroups, Acta Math. Sin., Chin. Ser. 54 Chinese (2011), 619-622. (2011) Zbl1265.20031MR2882946
- Tărnăuceanu, M., Counting subgroups for a class of finite nonabelian -groups, An. Univ. Vest Timiş., Ser. Mat.-Inform. 46 (2008), 145-150. (2008) Zbl1199.20020MR2791473
- Zhang, J., 10.1006/jabr.1995.1235, J. Algebra 176 (1995), 111-123. (1995) Zbl0832.20042MR1345296DOI10.1006/jabr.1995.1235