Inserting measurable functions precisely
Javier Gutiérrez García; Tomasz Kubiak
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 3, page 743-749
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGutiérrez García, Javier, and Kubiak, Tomasz. "Inserting measurable functions precisely." Czechoslovak Mathematical Journal 64.3 (2014): 743-749. <http://eudml.org/doc/262160>.
@article{GutiérrezGarcía2014,
abstract = {A family of subsets of a set is called a $\sigma $-topology if it is closed under arbitrary countable unions and arbitrary finite intersections. A $\sigma $-topology is perfect if any its member (open set) is a countable union of complements of open sets. In this paper perfect $\sigma $-topologies are characterized in terms of inserting lower and upper measurable functions. This improves upon and extends a similar result concerning perfect topologies. Combining this characterization with a $\sigma $-topological version of Katětov-Tong insertion theorem yields a Michael insertion theorem for normal and perfect $\sigma $-topological spaces.},
author = {Gutiérrez García, Javier, Kubiak, Tomasz},
journal = {Czechoslovak Mathematical Journal},
keywords = {insertion; $\sigma $-topology; $\sigma $-ring; perfectness; normality; upper measurable function; lower measurable function; measurable function; insertion; $\sigma $-topology; -ring; perfectness; normality; upper measurable function; lower measurable function; measurable function},
language = {eng},
number = {3},
pages = {743-749},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inserting measurable functions precisely},
url = {http://eudml.org/doc/262160},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Gutiérrez García, Javier
AU - Kubiak, Tomasz
TI - Inserting measurable functions precisely
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 3
SP - 743
EP - 749
AB - A family of subsets of a set is called a $\sigma $-topology if it is closed under arbitrary countable unions and arbitrary finite intersections. A $\sigma $-topology is perfect if any its member (open set) is a countable union of complements of open sets. In this paper perfect $\sigma $-topologies are characterized in terms of inserting lower and upper measurable functions. This improves upon and extends a similar result concerning perfect topologies. Combining this characterization with a $\sigma $-topological version of Katětov-Tong insertion theorem yields a Michael insertion theorem for normal and perfect $\sigma $-topological spaces.
LA - eng
KW - insertion; $\sigma $-topology; $\sigma $-ring; perfectness; normality; upper measurable function; lower measurable function; measurable function; insertion; $\sigma $-topology; -ring; perfectness; normality; upper measurable function; lower measurable function; measurable function
UR - http://eudml.org/doc/262160
ER -
References
top- Alexandroff, A. D., Additive set-functions in abstract spaces. II, Rec. Math. Moscou, Nouvelle Série 9 (1941), 563-628. (1941) MR0005785
- Blatter, J., Seever, G. L., Interposition of semicontinuous functions by continuous functions, Analyse Fonctionnelle et Applications (Comptes Rendus Colloq. d'Analyse, Inst. Mat., Univ. Federal do Rio de Janeiro, Rio de Janeiro, Brasil, 1972), Actualités Scientifiques et Industrielles, No. 1367 Hermann, Paris (1975), 27-51. (1975) Zbl0318.54009MR0435793
- Bukovský, L., The Structure of the Real Line, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) 71 Birkhäuser, Basel (2011). (2011) Zbl1219.26002MR2778559
- Gillman, L., Jerison, M., Rings of Continuous Functions, Graduate Texts in Mathematics 43 Springer, New York (1976). (1976) Zbl0327.46040MR0407579
- García, J. Gutiérrez, Kubiak, T., 10.1007/s10474-007-7041-2, Acta Math. Hung. 119 (2008), 333-339. (2008) MR2429294DOI10.1007/s10474-007-7041-2
- Hausdorff, F., Set Theory, (3rd ed.), Chelsea Publishing Company, New York (1978). (1978) Zbl0488.04001MR0141601
- Katětov, M., 10.4064/fm-38-1-85-91, Fundam. Math. 38 (1951), 85-91; Fundam. Math. (1953), 203-205 (Correction). (1951) Zbl0045.25704MR0050264DOI10.4064/fm-38-1-85-91
- Kotzé, W., Kubiak, T., 10.1017/S1446788700037708, J. Aust. Math. Soc., Ser. A 57 (1994), 295-304. (1994) Zbl0851.54018MR1297004DOI10.1017/S1446788700037708
- Lane, E. P., Insertion of a continuous function, The Proceedings of the Topology Conference, Ohio Univ., Ohio, 1979, Topol. Proc. 4 (1979), 463-478. (1979) Zbl0386.54006MR0598287
- Michael, E., 10.2307/1969615, Ann. Math. (2) 63 (1956), 361-382. (1956) Zbl0071.15902MR0077107DOI10.2307/1969615
- Sikorski, R., Real Functions, Vol. 1, Monografie Matematyczne 35 Państwowe Wydawnictwo Naukowe, Warszawa Polish (1958). (1958) MR0091312
- Stone, M. H., 10.4153/CJM-1949-016-5, Can. J. Math. 1 (1949), 176-186. (1949) Zbl0032.16901MR0029091DOI10.4153/CJM-1949-016-5
- Tong, H., 10.1215/S0012-7094-52-01928-5, Duke Math. J. 19 (1952), 289-292. (1952) Zbl0046.16203MR0050265DOI10.1215/S0012-7094-52-01928-5
- Yan, P.-F., Yang, E.-G., 10.1016/j.jmaa.2006.05.043, J. Math. Anal. Appl. 328 (2007), 429-437. (2007) Zbl1117.54041MR2285560DOI10.1016/j.jmaa.2006.05.043
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.