Point-distinguishing chromatic index of the union of paths

Xiang'en Chen

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 3, page 629-640
  • ISSN: 0011-4642

Abstract

top
Let G be a simple graph. For a general edge coloring of a graph G (i.e., not necessarily a proper edge coloring) and a vertex v of G , denote by S ( v ) the set (not a multiset) of colors used to color the edges incident to v . For a general edge coloring f of a graph G , if S ( u ) S ( v ) for any two different vertices u and v of G , then we say that f is a point-distinguishing general edge coloring of G . The minimum number of colors required for a point-distinguishing general edge coloring of G , denoted by χ 0 ( G ) , is called the point-distinguishing chromatic index of G . In this paper, we determine the point-distinguishing chromatic index of the union of paths and propose a conjecture.

How to cite

top

Chen, Xiang'en. "Point-distinguishing chromatic index of the union of paths." Czechoslovak Mathematical Journal 64.3 (2014): 629-640. <http://eudml.org/doc/262192>.

@article{Chen2014,
abstract = {Let $G$ be a simple graph. For a general edge coloring of a graph $G$ (i.e., not necessarily a proper edge coloring) and a vertex $v$ of $G$, denote by $S(v)$ the set (not a multiset) of colors used to color the edges incident to $v$. For a general edge coloring $f$ of a graph $G$, if $S(u)\ne S(v)$ for any two different vertices $u$ and $v$ of $G$, then we say that $f$ is a point-distinguishing general edge coloring of $G$. The minimum number of colors required for a point-distinguishing general edge coloring of $G$, denoted by $\chi _\{0\}(G)$, is called the point-distinguishing chromatic index of $G$. In this paper, we determine the point-distinguishing chromatic index of the union of paths and propose a conjecture.},
author = {Chen, Xiang'en},
journal = {Czechoslovak Mathematical Journal},
keywords = {general edge coloring; point-distinguishing general edge coloring; point-distinguishing chromatic index; general edge coloring; point-distinguishing general edge coloring; point-distinguishing chromatic index},
language = {eng},
number = {3},
pages = {629-640},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Point-distinguishing chromatic index of the union of paths},
url = {http://eudml.org/doc/262192},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Chen, Xiang'en
TI - Point-distinguishing chromatic index of the union of paths
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 3
SP - 629
EP - 640
AB - Let $G$ be a simple graph. For a general edge coloring of a graph $G$ (i.e., not necessarily a proper edge coloring) and a vertex $v$ of $G$, denote by $S(v)$ the set (not a multiset) of colors used to color the edges incident to $v$. For a general edge coloring $f$ of a graph $G$, if $S(u)\ne S(v)$ for any two different vertices $u$ and $v$ of $G$, then we say that $f$ is a point-distinguishing general edge coloring of $G$. The minimum number of colors required for a point-distinguishing general edge coloring of $G$, denoted by $\chi _{0}(G)$, is called the point-distinguishing chromatic index of $G$. In this paper, we determine the point-distinguishing chromatic index of the union of paths and propose a conjecture.
LA - eng
KW - general edge coloring; point-distinguishing general edge coloring; point-distinguishing chromatic index; general edge coloring; point-distinguishing general edge coloring; point-distinguishing chromatic index
UR - http://eudml.org/doc/262192
ER -

References

top
  1. Balister, P. N., 10.1017/S0963548301004771, Comb. Probab. Comput. 10 (2001), 463-499. (2001) Zbl1113.05309MR1869841DOI10.1017/S0963548301004771
  2. Balister, P. N., Bollobás, B., Schelp, R. H., Vertex distinguishing colorings of graphs with Δ ( G ) = 2 , Discrete Math. 252 (2002), 17-29. (2002) Zbl1005.05019MR1907743
  3. Balister, P. N., Riordan, O. M., Schelp, R. H., 10.1002/jgt.10076, J. Graph Theory 42 (2003), 95-109. (2003) Zbl1008.05067MR1953223DOI10.1002/jgt.10076
  4. Bazgan, C., Harkat-Benhamdine, A., Li, H., Wo'zniak, M., 10.1006/jctb.1998.1884, J. Comb. Theory, Ser. B 75 (1999), 288-301. (1999) MR1676894DOI10.1006/jctb.1998.1884
  5. Burris, A. C., Schelp, R. H., 10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C, J. Graph Theory 26 (1997), 73-82. (1997) Zbl0886.05068MR1469354DOI10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C
  6. Černý, J., Horňák, M., Soták, R., Observability of a graph, Math. Slovaca 46 (1996), 21-31. (1996) Zbl0853.05040MR1414406
  7. Harary, F., Plantholt, M., The point-distinguishing chromatic index, Graphs and Application, Proc. 1st Symp. Graph theory, Boulder/Colo. 1982 F. Harary et al. A Wiley-Interscience Publication John Wiley & Sons, New York (1985), 147-162. (1985) Zbl0562.05023MR0778404
  8. Horňák, M., Salvi, N. Z., On the point-distinguishing chromatic index of complete bipartite graphs, Ars Comb. 80 (2006), 75-85. (2006) Zbl1224.05174MR2243079
  9. Horňák, M., Soták, R., 10.1016/S0012-365X(96)00292-0, Discrete Math. 176 (1997), 139-148. (1997) MR1477284DOI10.1016/S0012-365X(96)00292-0
  10. Horňák, M., Soták, R., 10.7151/dmgt.1051, Discuss. Math., Graph Theory 17 (1997), 243-251. (1997) Zbl0906.05025MR1627943DOI10.7151/dmgt.1051
  11. Horňák, M., Soták, R., Observability of complete multipartite graphs with equipotent parts, Ars Comb. 41 (1995), 289-301. (1995) Zbl0841.05032MR1365173
  12. Horňák, M., Soták, R., The fifth jump of the point-distinguishing chromatic index of K n , n , Ars Comb. 42 (1996), 233-242. (1996) MR1386944
  13. Salvi, N. Z., On the point-distinguishing chromatic index of K n , n , Eleventh British Combinatorial Conference (London, 1987), Ars Comb. 25B (1988), 93-104. (1988) MR0942468
  14. Salvi, N. Z., On the value of the point-distinguishing chromatic index of K n , n , Twelfth British Combinatorial Conference (Norwich, 1989), Ars Comb. 29B (1990), 235-244. (1990) MR1412879

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.