Point-distinguishing chromatic index of the union of paths
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 3, page 629-640
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Xiang'en. "Point-distinguishing chromatic index of the union of paths." Czechoslovak Mathematical Journal 64.3 (2014): 629-640. <http://eudml.org/doc/262192>.
@article{Chen2014,
abstract = {Let $G$ be a simple graph. For a general edge coloring of a graph $G$ (i.e., not necessarily a proper edge coloring) and a vertex $v$ of $G$, denote by $S(v)$ the set (not a multiset) of colors used to color the edges incident to $v$. For a general edge coloring $f$ of a graph $G$, if $S(u)\ne S(v)$ for any two different vertices $u$ and $v$ of $G$, then we say that $f$ is a point-distinguishing general edge coloring of $G$. The minimum number of colors required for a point-distinguishing general edge coloring of $G$, denoted by $\chi _\{0\}(G)$, is called the point-distinguishing chromatic index of $G$. In this paper, we determine the point-distinguishing chromatic index of the union of paths and propose a conjecture.},
author = {Chen, Xiang'en},
journal = {Czechoslovak Mathematical Journal},
keywords = {general edge coloring; point-distinguishing general edge coloring; point-distinguishing chromatic index; general edge coloring; point-distinguishing general edge coloring; point-distinguishing chromatic index},
language = {eng},
number = {3},
pages = {629-640},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Point-distinguishing chromatic index of the union of paths},
url = {http://eudml.org/doc/262192},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Chen, Xiang'en
TI - Point-distinguishing chromatic index of the union of paths
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 3
SP - 629
EP - 640
AB - Let $G$ be a simple graph. For a general edge coloring of a graph $G$ (i.e., not necessarily a proper edge coloring) and a vertex $v$ of $G$, denote by $S(v)$ the set (not a multiset) of colors used to color the edges incident to $v$. For a general edge coloring $f$ of a graph $G$, if $S(u)\ne S(v)$ for any two different vertices $u$ and $v$ of $G$, then we say that $f$ is a point-distinguishing general edge coloring of $G$. The minimum number of colors required for a point-distinguishing general edge coloring of $G$, denoted by $\chi _{0}(G)$, is called the point-distinguishing chromatic index of $G$. In this paper, we determine the point-distinguishing chromatic index of the union of paths and propose a conjecture.
LA - eng
KW - general edge coloring; point-distinguishing general edge coloring; point-distinguishing chromatic index; general edge coloring; point-distinguishing general edge coloring; point-distinguishing chromatic index
UR - http://eudml.org/doc/262192
ER -
References
top- Balister, P. N., 10.1017/S0963548301004771, Comb. Probab. Comput. 10 (2001), 463-499. (2001) Zbl1113.05309MR1869841DOI10.1017/S0963548301004771
- Balister, P. N., Bollobás, B., Schelp, R. H., Vertex distinguishing colorings of graphs with , Discrete Math. 252 (2002), 17-29. (2002) Zbl1005.05019MR1907743
- Balister, P. N., Riordan, O. M., Schelp, R. H., 10.1002/jgt.10076, J. Graph Theory 42 (2003), 95-109. (2003) Zbl1008.05067MR1953223DOI10.1002/jgt.10076
- Bazgan, C., Harkat-Benhamdine, A., Li, H., Wo'zniak, M., 10.1006/jctb.1998.1884, J. Comb. Theory, Ser. B 75 (1999), 288-301. (1999) MR1676894DOI10.1006/jctb.1998.1884
- Burris, A. C., Schelp, R. H., 10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C, J. Graph Theory 26 (1997), 73-82. (1997) Zbl0886.05068MR1469354DOI10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C
- Černý, J., Horňák, M., Soták, R., Observability of a graph, Math. Slovaca 46 (1996), 21-31. (1996) Zbl0853.05040MR1414406
- Harary, F., Plantholt, M., The point-distinguishing chromatic index, Graphs and Application, Proc. 1st Symp. Graph theory, Boulder/Colo. 1982 F. Harary et al. A Wiley-Interscience Publication John Wiley & Sons, New York (1985), 147-162. (1985) Zbl0562.05023MR0778404
- Horňák, M., Salvi, N. Z., On the point-distinguishing chromatic index of complete bipartite graphs, Ars Comb. 80 (2006), 75-85. (2006) Zbl1224.05174MR2243079
- Horňák, M., Soták, R., 10.1016/S0012-365X(96)00292-0, Discrete Math. 176 (1997), 139-148. (1997) MR1477284DOI10.1016/S0012-365X(96)00292-0
- Horňák, M., Soták, R., 10.7151/dmgt.1051, Discuss. Math., Graph Theory 17 (1997), 243-251. (1997) Zbl0906.05025MR1627943DOI10.7151/dmgt.1051
- Horňák, M., Soták, R., Observability of complete multipartite graphs with equipotent parts, Ars Comb. 41 (1995), 289-301. (1995) Zbl0841.05032MR1365173
- Horňák, M., Soták, R., The fifth jump of the point-distinguishing chromatic index of , Ars Comb. 42 (1996), 233-242. (1996) MR1386944
- Salvi, N. Z., On the point-distinguishing chromatic index of , Eleventh British Combinatorial Conference (London, 1987), Ars Comb. 25B (1988), 93-104. (1988) MR0942468
- Salvi, N. Z., On the value of the point-distinguishing chromatic index of , Twelfth British Combinatorial Conference (Norwich, 1989), Ars Comb. 29B (1990), 235-244. (1990) MR1412879
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.