Distributional properties of powers of matrices

Fernando Chamizo; Dulcinea Raboso

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 3, page 801-817
  • ISSN: 0011-4642

Abstract

top
We apply the larger sieve to bound the number of 2 × 2 matrices not having large order when reduced modulo the primes in an interval. Our motivation is the relation with linear recursive congruential generators. Basically our results establish that the probability of finding a matrix with large order modulo many primes drops drastically when a certain threshold involving the number of primes and the order is exceeded. We also study, for a given prime and a matrix, the existence of nearby non-similar matrices having large order. In this direction we find matrices of large order when the trace is restricted to take values in a short interval.

How to cite

top

Chamizo, Fernando, and Raboso, Dulcinea. "Distributional properties of powers of matrices." Czechoslovak Mathematical Journal 64.3 (2014): 801-817. <http://eudml.org/doc/262197>.

@article{Chamizo2014,
abstract = {We apply the larger sieve to bound the number of $2\times 2$ matrices not having large order when reduced modulo the primes in an interval. Our motivation is the relation with linear recursive congruential generators. Basically our results establish that the probability of finding a matrix with large order modulo many primes drops drastically when a certain threshold involving the number of primes and the order is exceeded. We also study, for a given prime and a matrix, the existence of nearby non-similar matrices having large order. In this direction we find matrices of large order when the trace is restricted to take values in a short interval.},
author = {Chamizo, Fernando, Raboso, Dulcinea},
journal = {Czechoslovak Mathematical Journal},
keywords = {larger sieve; pseudorandom number; finite field; special linear group of degree 2; general linear group of degree 2; larger sieve; pseudorandom number; finite field; special linear group of degree 2; general linear group of degree 2},
language = {eng},
number = {3},
pages = {801-817},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Distributional properties of powers of matrices},
url = {http://eudml.org/doc/262197},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Chamizo, Fernando
AU - Raboso, Dulcinea
TI - Distributional properties of powers of matrices
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 3
SP - 801
EP - 817
AB - We apply the larger sieve to bound the number of $2\times 2$ matrices not having large order when reduced modulo the primes in an interval. Our motivation is the relation with linear recursive congruential generators. Basically our results establish that the probability of finding a matrix with large order modulo many primes drops drastically when a certain threshold involving the number of primes and the order is exceeded. We also study, for a given prime and a matrix, the existence of nearby non-similar matrices having large order. In this direction we find matrices of large order when the trace is restricted to take values in a short interval.
LA - eng
KW - larger sieve; pseudorandom number; finite field; special linear group of degree 2; general linear group of degree 2; larger sieve; pseudorandom number; finite field; special linear group of degree 2; general linear group of degree 2
UR - http://eudml.org/doc/262197
ER -

References

top
  1. Baker, R. C., Harman, G., 10.4064/aa-83-4-331-361, Acta Arith. 83 (1998), 331-361. (1998) Zbl0994.11033MR1610553DOI10.4064/aa-83-4-331-361
  2. Baker, R. C., Harman, G., Pintz, J., 10.1112/plms/83.3.532, Proc. Lond. Math. Soc. (3) 83 (2001), 532-562. (2001) Zbl1016.11037MR1851081DOI10.1112/plms/83.3.532
  3. Chang, M.-C., 10.1007/s00039-009-0031-5, Geom. Funct. Anal. 19 (2009), 1001-1016. (2009) MR2570312DOI10.1007/s00039-009-0031-5
  4. Davenport, H., Multiplicative Number Theory (2nd rev. ed.), Graduate Texts in Mathematics 74 Springer, New York (1980). (1980) MR0606931
  5. Eichenauer-Herrmann, J., Grothe, H., Lehn, J., 10.1090/S0025-5718-1989-0946603-0, Math. Comput. 52 (1989), 145-148. (1989) Zbl0657.65008MR0946603DOI10.1090/S0025-5718-1989-0946603-0
  6. Friedlander, J., Iwaniec, H., 10.1090/coll/057, American Mathematical Society Colloquium Publications 57 Providence (2010). (2010) Zbl1226.11099MR2647984DOI10.1090/coll/057
  7. Gallagher, P. X., 10.4064/aa-18-1-77-81, Acta Arith. 18 (1971), 77-81. (1971) Zbl0231.10028MR0291120DOI10.4064/aa-18-1-77-81
  8. Hardy, G. H., Wright, E. M., An Introduction to the Theory of Numbers (6th rev. ed.), Oxford University Press, Oxford (2008). (2008) MR2445243
  9. Harman, G., Prime-Detecting Sieves, London Mathematical Society Monographs Series 33 Princeton University Press, Princeton (2007). (2007) Zbl1220.11118MR2331072
  10. Huxley, M. N., 10.1007/BF01418933, Invent. Math. 15 (1972), 164-170. (1972) Zbl0241.10026MR0292774DOI10.1007/BF01418933
  11. Iwaniec, H., Kowalski, E., Analytic Number Theory, American Mathematical Society Colloquium Publications 53 Providence (2004). (2004) Zbl1059.11001MR2061214
  12. Kuipers, L., Niederreiter, H., Uniform Distribution of Sequences, Pure and Applied Mathematics John Wiley & Sons, New York (1974). (1974) Zbl0281.10001MR0419394
  13. Kurlberg, P., 10.4064/aa110-2-4, Acta Arith. 110 (2003), 141-151. (2003) Zbl1030.11048MR2008081DOI10.4064/aa110-2-4
  14. Kurlberg, P., Rosenzweig, L., Rudnick, Z., 10.1088/0951-7715/20/10/001, Nonlinearity 20 (2007), 2289-2304. (2007) Zbl1187.81131MR2356110DOI10.1088/0951-7715/20/10/001
  15. Kurlberg, P., Rudnick, Z., 10.1007/s002200100501, Commun. Math. Phys. 222 (2001), 201-227. (2001) Zbl1042.81026MR1853869DOI10.1007/s002200100501
  16. L'Ecuyer, P., 10.1007/BF02136827, Ann. Oper. Res. 53 (1994), 77-120. (1994) Zbl0843.65004MR1310607DOI10.1007/BF02136827
  17. Li, W. C. W., Number Theory with Applications, Series on University Mathematics 7 World Scientific, River Edge (1996). (1996) MR1390759
  18. Maier, H., 10.1307/mmj/1029003189, Michigan Math. J. 32 (1985), 221-225. (1985) Zbl0569.10023MR0783576DOI10.1307/mmj/1029003189
  19. Mollin, R. A., Advanced Number Theory with Applications, Discrete Mathematics and Its Applications CRC Press, Boca Raton (2010). (2010) Zbl1200.11002MR2560324
  20. Montgomery, H. L., Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, CBMS Regional Conference Series in Mathematics 84 AMS, Providence (1994). (1994) Zbl0814.11001MR1297543
  21. Montgomery, H. L., Vaughan, R. C., 10.1112/S0025579300004708, Mathematika, Lond. 20 (1973), 119-134. (1973) Zbl0296.10023MR0374060DOI10.1112/S0025579300004708
  22. Niederreiter, H., 10.1016/0377-0427(90)90345-Z, J. Comput. Appl. Math. 31 (1990), 139-151. (1990) Zbl0708.65007MR1068157DOI10.1016/0377-0427(90)90345-Z
  23. Roskam, H., 10.1006/jnth.1999.2470, J. Number Theory 81 (2000), 93-109. (2000) Zbl1049.11125MR1743503DOI10.1006/jnth.1999.2470
  24. Shoup, V., 10.1090/S0025-5718-1992-1106981-9, Math. Comput. 58 (1992), 369-380. (1992) Zbl0747.11060MR1106981DOI10.1090/S0025-5718-1992-1106981-9
  25. Stephens, P. J., 10.1112/S0025579300008159, Mathematika, Lond. 16 (1969), 178-188. (1969) Zbl0186.08402MR0498449DOI10.1112/S0025579300008159

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.