Shifted primes without large prime factors

R. C. Baker; G. Harman

Acta Arithmetica (1998)

  • Volume: 83, Issue: 4, page 331-361
  • ISSN: 0065-1036

How to cite

top

R. C. Baker, and G. Harman. "Shifted primes without large prime factors." Acta Arithmetica 83.4 (1998): 331-361. <http://eudml.org/doc/207126>.

@article{R1998,
author = {R. C. Baker, G. Harman},
journal = {Acta Arithmetica},
language = {eng},
number = {4},
pages = {331-361},
title = {Shifted primes without large prime factors},
url = {http://eudml.org/doc/207126},
volume = {83},
year = {1998},
}

TY - JOUR
AU - R. C. Baker
AU - G. Harman
TI - Shifted primes without large prime factors
JO - Acta Arithmetica
PY - 1998
VL - 83
IS - 4
SP - 331
EP - 361
LA - eng
UR - http://eudml.org/doc/207126
ER -

References

top
  1. [1] W. R. Alford, A. Granville and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. 139 (1994), 703-722. Zbl0816.11005
  2. [2] R. C. Baker and G. Harman, The Brun-Titchmarsh theorem on average, in: Analytic Number Theory, Vol. I, Birkhäuser, Boston, 1996, 39-103. Zbl0853.11078
  3. [3] A. Balog, p + a without large prime factors, Sém. Théorie des Nombres Bordeaux (1983-84), exposé 31. 
  4. [4] E. Bombieri, J. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156 (1986), 203-251. Zbl0588.10042
  5. [5] E. Bombieri, J. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli II, Math. Ann. 277 (1987), 361-393. Zbl0625.10036
  6. [6] E. Fouvry, Théorème de Brun-Titchmarsh; application au théorème de Fermat, Invent. Math. 79 (1985), 383-407. Zbl0557.10035
  7. [7] E. Fouvry and F. Grupp, On the switching principle in sieve theory, J. Reine Angew. Math. 370 (1986), 101-126. Zbl0588.10051
  8. [8] J. Friedlander, Shifted primes without large prime factors, in: Number Theory and Applications, 1989, Kluwer, Berlin, 1990, 393-401. 
  9. [9] J. B. Friedlander and H. Iwaniec, On Bombieri's asymptotic sieve, Ann. Scuola Norm. Sup. Pisa 5 (1978), 719-756. Zbl0396.10037
  10. [10] D. R. Heath-Brown, The number of primes in a short interval, J. Reine Angew. Math. 389 (1988), 22-63. Zbl0646.10032
  11. [11] C. Pomerance, Popular values of Euler's function, Mathematika 27 (1980), 84-89. Zbl0437.10001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.