# Shifted primes without large prime factors

Acta Arithmetica (1998)

- Volume: 83, Issue: 4, page 331-361
- ISSN: 0065-1036

## Access Full Article

top## How to cite

topR. C. Baker, and G. Harman. "Shifted primes without large prime factors." Acta Arithmetica 83.4 (1998): 331-361. <http://eudml.org/doc/207126>.

@article{R1998,

author = {R. C. Baker, G. Harman},

journal = {Acta Arithmetica},

language = {eng},

number = {4},

pages = {331-361},

title = {Shifted primes without large prime factors},

url = {http://eudml.org/doc/207126},

volume = {83},

year = {1998},

}

TY - JOUR

AU - R. C. Baker

AU - G. Harman

TI - Shifted primes without large prime factors

JO - Acta Arithmetica

PY - 1998

VL - 83

IS - 4

SP - 331

EP - 361

LA - eng

UR - http://eudml.org/doc/207126

ER -

## References

top- [1] W. R. Alford, A. Granville and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. 139 (1994), 703-722. Zbl0816.11005
- [2] R. C. Baker and G. Harman, The Brun-Titchmarsh theorem on average, in: Analytic Number Theory, Vol. I, Birkhäuser, Boston, 1996, 39-103. Zbl0853.11078
- [3] A. Balog, p + a without large prime factors, Sém. Théorie des Nombres Bordeaux (1983-84), exposé 31.
- [4] E. Bombieri, J. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156 (1986), 203-251. Zbl0588.10042
- [5] E. Bombieri, J. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli II, Math. Ann. 277 (1987), 361-393. Zbl0625.10036
- [6] E. Fouvry, Théorème de Brun-Titchmarsh; application au théorème de Fermat, Invent. Math. 79 (1985), 383-407. Zbl0557.10035
- [7] E. Fouvry and F. Grupp, On the switching principle in sieve theory, J. Reine Angew. Math. 370 (1986), 101-126. Zbl0588.10051
- [8] J. Friedlander, Shifted primes without large prime factors, in: Number Theory and Applications, 1989, Kluwer, Berlin, 1990, 393-401.
- [9] J. B. Friedlander and H. Iwaniec, On Bombieri's asymptotic sieve, Ann. Scuola Norm. Sup. Pisa 5 (1978), 719-756. Zbl0396.10037
- [10] D. R. Heath-Brown, The number of primes in a short interval, J. Reine Angew. Math. 389 (1988), 22-63. Zbl0646.10032
- [11] C. Pomerance, Popular values of Euler's function, Mathematika 27 (1980), 84-89. Zbl0437.10001

## Citations in EuDML Documents

top- Florian Luca, Igor E. Shparlinski, On the largest prime factor of $n!+{2}^{n}-1$
- Fernando Chamizo, Dulcinea Raboso, Distributional properties of powers of matrices
- Florian Luca, Paul Pollack, An arithmetic function arising from Carmichael’s conjecture
- Glyn Harman, Integers without large prime factors in short intervals and arithmetic progressions

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.