Uniqueness of the stereographic embedding
Archivum Mathematicum (2014)
- Volume: 050, Issue: 5, page 265-271
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topEastwood, Michael. "Uniqueness of the stereographic embedding." Archivum Mathematicum 050.5 (2014): 265-271. <http://eudml.org/doc/262198>.
@article{Eastwood2014,
abstract = {The standard conformal compactification of Euclidean space is the round sphere. We use conformal geodesics to give an elementary proof that this is the only possible conformal compactification.},
author = {Eastwood, Michael},
journal = {Archivum Mathematicum},
keywords = {stereographic; conformal circles; compactification; stereographic projection; conformal circles; compactification},
language = {eng},
number = {5},
pages = {265-271},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Uniqueness of the stereographic embedding},
url = {http://eudml.org/doc/262198},
volume = {050},
year = {2014},
}
TY - JOUR
AU - Eastwood, Michael
TI - Uniqueness of the stereographic embedding
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 5
SP - 265
EP - 271
AB - The standard conformal compactification of Euclidean space is the round sphere. We use conformal geodesics to give an elementary proof that this is the only possible conformal compactification.
LA - eng
KW - stereographic; conformal circles; compactification; stereographic projection; conformal circles; compactification
UR - http://eudml.org/doc/262198
ER -
References
top- Bailey, T.N., Eastwood, M.G., 10.1090/S0002-9939-1990-0994771-7, Proc. Amer. Math. Soc. 108 (1990), 215–221. (1990) Zbl0684.53016MR0994771DOI10.1090/S0002-9939-1990-0994771-7
- Cartan, É., Les espaces à connexion conforme, Ann. Soc. Polon. Math. (1923), 171–221. (1923)
- Francès, C., Rigidity at the boundary for conformal structures and other Cartan geometries, arXiv:0806:1008.
- Francès, C., Sur le groupe d’automorphismes des géométries paraboliques de rang 1, Ann. Sci. École Norm. Sup. 40 (2007), 741–764. (2007) Zbl1135.53016MR2382860
- The Maple program: http://www.maplesoft.com, ple program: http://www.maplesoft.com.
- Tod, K.P., 10.1016/j.geomphys.2012.03.010, J. Geom. Phys. 62 (2012), 1778–1792. (2012) Zbl1245.53042MR2925827DOI10.1016/j.geomphys.2012.03.010
- Yano, K., The Theory of Lie Derivatives and its Applications, North-Holland 1957. Zbl0077.15802MR0088769
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.