Compatible Idempotent Terms in Universal Algebra

Ivan Chajda; Antonio Ledda; Francesco Paoli

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)

  • Volume: 53, Issue: 2, page 35-51
  • ISSN: 0231-9721

Abstract

top
In universal algebra, we oftentimes encounter varieties that are not especially well-behaved from any point of view, but are such that all their members have a “well-behaved core”, i.e. subalgebras or quotients with satisfactory properties. Of special interest is the case in which this “core” is a retract determined by an idempotent endomorphism that is uniformly term definable (through a unary term t ( x ) ) in every member of the given variety. Here, we try to give a unified account of this phenomenon. In particular, we investigate what happens when various congruence properties—like congruence distributivity, congruence permutability or congruence modularity—are not supposed to hold unrestrictedly in any 𝐀 𝒱 , but only for congruence classes of values of the term operation t 𝐀 .

How to cite

top

Chajda, Ivan, Ledda, Antonio, and Paoli, Francesco. "Compatible Idempotent Terms in Universal Algebra." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53.2 (2014): 35-51. <http://eudml.org/doc/262211>.

@article{Chajda2014,
abstract = {In universal algebra, we oftentimes encounter varieties that are not especially well-behaved from any point of view, but are such that all their members have a “well-behaved core”, i.e. subalgebras or quotients with satisfactory properties. Of special interest is the case in which this “core” is a retract determined by an idempotent endomorphism that is uniformly term definable (through a unary term $t(x)$) in every member of the given variety. Here, we try to give a unified account of this phenomenon. In particular, we investigate what happens when various congruence properties—like congruence distributivity, congruence permutability or congruence modularity—are not supposed to hold unrestrictedly in any $\mathbf \{A\}\in \mathcal \{V\}$, but only for congruence classes of values of the term operation $t^\{\mathbf \{A\}\}$.},
author = {Chajda, Ivan, Ledda, Antonio, Paoli, Francesco},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Congruence distributive variety; congruence modular variety; congruence permutable variety; idempotent endomorphism; congruence distributive varieties; congruence modular varieties; congruence permutable varieties; idempotent endomorphisms; idempotent term operations},
language = {eng},
number = {2},
pages = {35-51},
publisher = {Palacký University Olomouc},
title = {Compatible Idempotent Terms in Universal Algebra},
url = {http://eudml.org/doc/262211},
volume = {53},
year = {2014},
}

TY - JOUR
AU - Chajda, Ivan
AU - Ledda, Antonio
AU - Paoli, Francesco
TI - Compatible Idempotent Terms in Universal Algebra
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2014
PB - Palacký University Olomouc
VL - 53
IS - 2
SP - 35
EP - 51
AB - In universal algebra, we oftentimes encounter varieties that are not especially well-behaved from any point of view, but are such that all their members have a “well-behaved core”, i.e. subalgebras or quotients with satisfactory properties. Of special interest is the case in which this “core” is a retract determined by an idempotent endomorphism that is uniformly term definable (through a unary term $t(x)$) in every member of the given variety. Here, we try to give a unified account of this phenomenon. In particular, we investigate what happens when various congruence properties—like congruence distributivity, congruence permutability or congruence modularity—are not supposed to hold unrestrictedly in any $\mathbf {A}\in \mathcal {V}$, but only for congruence classes of values of the term operation $t^{\mathbf {A}}$.
LA - eng
KW - Congruence distributive variety; congruence modular variety; congruence permutable variety; idempotent endomorphism; congruence distributive varieties; congruence modular varieties; congruence permutable varieties; idempotent endomorphisms; idempotent term operations
UR - http://eudml.org/doc/262211
ER -

References

top
  1. Bignall, R. J., Leech, J., 10.1007/BF01190707, Algebra Universalis 33 (1995), 387–398. (1995) Zbl0821.06013MR1322781DOI10.1007/BF01190707
  2. Blok, W. J., Raftery, J. G., 10.1142/S0218196708004627, International Journal of Algebra and Computation 18, 4 (2008), 589–681. (2008) Zbl1148.08002MR2428150DOI10.1142/S0218196708004627
  3. Bou, F., Paoli, F., Ledda, A., Freytes, H., 10.1007/s00500-007-0185-8, Soft Computing 12, 4 (2008), 341–352. (2008) Zbl1127.06007DOI10.1007/s00500-007-0185-8
  4. Burris, S., Sankappanavar, H. P., A Course in Universal Algebra, Springer-Verlag, Berlin, 1981. (1981) Zbl0478.08001MR0648287
  5. Chajda, I., 10.1007/BF01182089, Algebra Universalis 34 (1995), 327–335. (1995) Zbl0842.08007MR1350845DOI10.1007/BF01182089
  6. Chajda, I., Jónsson’s lemma for normally presented varieties, Mathematica Bohemica 122, 4 (1997), 381–382. (1997) Zbl0897.08009MR1489399
  7. Chajda, I., Czédli, G., Horváth, E. K., Trapezoid Lemma and congruence distributivity, Mathematica Slovaca 53, 3 (2003), 247–253. (2003) Zbl1058.08007MR2025021
  8. Chajda, I., Czédli, G., Horváth, E. K., 10.1007/s00012-003-1808-2, Algebra Universalis 50 (2003), 51–60. (2003) Zbl1091.08006MR2026826DOI10.1007/s00012-003-1808-2
  9. Chajda, I., Horváth, E. K., A triangular scheme for congruence distributivity, Acta Sci. Math. (Szeged) 68 (2002), 29–35. (2002) Zbl0997.08001MR1916565
  10. Chajda, I., Rosenberg, I., Remarks on Jónsson’s lemma, Houston Journal of Mathematics 22, 2 (1996), 249–262. (1996) Zbl0871.08004MR1402747
  11. Cignoli, R., D’Ottaviano, I. M. L., Mundici, D., Algebraic Foundations of Many-Valued Reasoning, Kluwer, Dordrecht, 1999. (1999) MR1786097
  12. Cornish, W. H., Constructions for BCK-algebras, Math. Sem. Notes Kobe Univ. 11 (1983), 1–7. (1983) Zbl0553.03043MR0742903
  13. Di Nola, A., Dvurečenskij, A., 10.1016/j.apal.2009.05.003, Annals of Pure and Applied Logic 161, 2 (2009), 161–173. (2009) Zbl1212.06028MR2552736DOI10.1016/j.apal.2009.05.003
  14. Esteva, F., Godo, L., 10.1016/S0165-0114(01)00098-7, Fuzzy Sets and Systems 124 (2001), 271–288. (2001) MR1860848DOI10.1016/S0165-0114(01)00098-7
  15. Fleischer, I., 10.1007/BF02024400, Acta Math. Acad. Sci. Hungar. 6 (1955), 463–465. (1955) Zbl0070.26301MR0075913DOI10.1007/BF02024400
  16. Freese, R., McKenzie, R., Commutator Theory for Congruence Modular Varieties, London Mathematical Society Lecture Notes, 125, Cambridge University Press, Cambridge, 1987. (1987) Zbl0636.08001MR0909290
  17. Frink, O., 10.1215/S0012-7094-62-02951-4, Duke Math. J. 29 (1962), 505–514. (1962) Zbl0114.01602MR0140449DOI10.1215/S0012-7094-62-02951-4
  18. Galatos, N., Jipsen, P., Kowalski, T., Ono, H., Residuated Lattices: An Algebraic Glimpse on Substructural Logics, Elsevier, Amsterdam, 2007. (2007) 
  19. Grätzer, G., Lattice Theory: First Concepts and Distributive Lattices, W. H. Freeman and Co., San Francisco, 1971. (1971) MR0321817
  20. Gumm, H. P., Geometrical Methods in Congruence Modular Algebras, Memoirs Amer. Math. Soc., Amer. Math. Soc., 1983. (1983) Zbl0547.08006MR0714648
  21. Jónsson, B., Tsinakis, C., 10.1023/B:STUD.0000037130.29400.97, Studia Logica 77 (2004), 267–292. (2004) Zbl1072.06003MR2080242DOI10.1023/B:STUD.0000037130.29400.97
  22. Kowalski, T., Paoli, F., On some properties of quasi-MV algebras and square root quasi-MV algebras, III, Reports on Mathematical Logic 45 (2010), 161–199. (2010) MR2790758
  23. Kowalski, T., Paoli, F., 10.1007/s00012-011-0137-0, Algebra Universalis 65, 4 (2011), 371–391. (2011) Zbl1233.08007MR2817559DOI10.1007/s00012-011-0137-0
  24. Kowalski, T., Paoli, F., Spinks, M., 10.2178/jsl/1318338848, Journal of Symbolic Logic 76, 4 (2011), 1261–1286. (2011) Zbl1254.03119MR2895395DOI10.2178/jsl/1318338848
  25. Ledda, A., Konig, M., Paoli, F., Giuntini, R., 10.1007/s11225-006-7202-2, Studia Logica 82, 2 (2006), 245–270. (2006) Zbl1102.06010MR2221525DOI10.1007/s11225-006-7202-2
  26. Leech, J., 10.1007/BF01243872, Algebra Universalis 26 (1989), 48–72. (1989) Zbl0669.06006MR0981425DOI10.1007/BF01243872
  27. Leech, J., 10.1007/BF02574077, Semigroup Forum 52 (1996), 7–24. (1996) Zbl0844.06003MR1363525DOI10.1007/BF02574077
  28. Paoli, F., Ledda, A., Kowalski, T., Spinks, M., 10.1142/S0218196714500179, International Journal of Algebra and Computation 24, 3 (2014), 375–411. (2014) MR3211909DOI10.1142/S0218196714500179
  29. Petrich, I., Lectures on semigroups, Wiley and Sons, New York, 1977. (1977) 
  30. Salibra, A., Ledda, A., Paoli, F., Kowalski, T., 10.1007/s00012-013-0223-6, Algebra Universalis 69, 2 (2013), 113–138. (2013) Zbl1284.06033MR3037008DOI10.1007/s00012-013-0223-6
  31. Sankappanavar, H. P., 10.1007/BF02488042, Algebra Universalis 9 (1979), 304–316. (1979) Zbl0424.06001MR0544854DOI10.1007/BF02488042
  32. Spinks, M., On the Theory of Pre-BCK Algebras, Ph.D. Thesis, Monash University, 2003. (2003) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.