Compatible Idempotent Terms in Universal Algebra
Ivan Chajda; Antonio Ledda; Francesco Paoli
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)
- Volume: 53, Issue: 2, page 35-51
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topChajda, Ivan, Ledda, Antonio, and Paoli, Francesco. "Compatible Idempotent Terms in Universal Algebra." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53.2 (2014): 35-51. <http://eudml.org/doc/262211>.
@article{Chajda2014,
abstract = {In universal algebra, we oftentimes encounter varieties that are not especially well-behaved from any point of view, but are such that all their members have a “well-behaved core”, i.e. subalgebras or quotients with satisfactory properties. Of special interest is the case in which this “core” is a retract determined by an idempotent endomorphism that is uniformly term definable (through a unary term $t(x)$) in every member of the given variety. Here, we try to give a unified account of this phenomenon. In particular, we investigate what happens when various congruence properties—like congruence distributivity, congruence permutability or congruence modularity—are not supposed to hold unrestrictedly in any $\mathbf \{A\}\in \mathcal \{V\}$, but only for congruence classes of values of the term operation $t^\{\mathbf \{A\}\}$.},
author = {Chajda, Ivan, Ledda, Antonio, Paoli, Francesco},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Congruence distributive variety; congruence modular variety; congruence permutable variety; idempotent endomorphism; congruence distributive varieties; congruence modular varieties; congruence permutable varieties; idempotent endomorphisms; idempotent term operations},
language = {eng},
number = {2},
pages = {35-51},
publisher = {Palacký University Olomouc},
title = {Compatible Idempotent Terms in Universal Algebra},
url = {http://eudml.org/doc/262211},
volume = {53},
year = {2014},
}
TY - JOUR
AU - Chajda, Ivan
AU - Ledda, Antonio
AU - Paoli, Francesco
TI - Compatible Idempotent Terms in Universal Algebra
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2014
PB - Palacký University Olomouc
VL - 53
IS - 2
SP - 35
EP - 51
AB - In universal algebra, we oftentimes encounter varieties that are not especially well-behaved from any point of view, but are such that all their members have a “well-behaved core”, i.e. subalgebras or quotients with satisfactory properties. Of special interest is the case in which this “core” is a retract determined by an idempotent endomorphism that is uniformly term definable (through a unary term $t(x)$) in every member of the given variety. Here, we try to give a unified account of this phenomenon. In particular, we investigate what happens when various congruence properties—like congruence distributivity, congruence permutability or congruence modularity—are not supposed to hold unrestrictedly in any $\mathbf {A}\in \mathcal {V}$, but only for congruence classes of values of the term operation $t^{\mathbf {A}}$.
LA - eng
KW - Congruence distributive variety; congruence modular variety; congruence permutable variety; idempotent endomorphism; congruence distributive varieties; congruence modular varieties; congruence permutable varieties; idempotent endomorphisms; idempotent term operations
UR - http://eudml.org/doc/262211
ER -
References
top- Bignall, R. J., Leech, J., 10.1007/BF01190707, Algebra Universalis 33 (1995), 387–398. (1995) Zbl0821.06013MR1322781DOI10.1007/BF01190707
- Blok, W. J., Raftery, J. G., 10.1142/S0218196708004627, International Journal of Algebra and Computation 18, 4 (2008), 589–681. (2008) Zbl1148.08002MR2428150DOI10.1142/S0218196708004627
- Bou, F., Paoli, F., Ledda, A., Freytes, H., 10.1007/s00500-007-0185-8, Soft Computing 12, 4 (2008), 341–352. (2008) Zbl1127.06007DOI10.1007/s00500-007-0185-8
- Burris, S., Sankappanavar, H. P., A Course in Universal Algebra, Springer-Verlag, Berlin, 1981. (1981) Zbl0478.08001MR0648287
- Chajda, I., 10.1007/BF01182089, Algebra Universalis 34 (1995), 327–335. (1995) Zbl0842.08007MR1350845DOI10.1007/BF01182089
- Chajda, I., Jónsson’s lemma for normally presented varieties, Mathematica Bohemica 122, 4 (1997), 381–382. (1997) Zbl0897.08009MR1489399
- Chajda, I., Czédli, G., Horváth, E. K., Trapezoid Lemma and congruence distributivity, Mathematica Slovaca 53, 3 (2003), 247–253. (2003) Zbl1058.08007MR2025021
- Chajda, I., Czédli, G., Horváth, E. K., 10.1007/s00012-003-1808-2, Algebra Universalis 50 (2003), 51–60. (2003) Zbl1091.08006MR2026826DOI10.1007/s00012-003-1808-2
- Chajda, I., Horváth, E. K., A triangular scheme for congruence distributivity, Acta Sci. Math. (Szeged) 68 (2002), 29–35. (2002) Zbl0997.08001MR1916565
- Chajda, I., Rosenberg, I., Remarks on Jónsson’s lemma, Houston Journal of Mathematics 22, 2 (1996), 249–262. (1996) Zbl0871.08004MR1402747
- Cignoli, R., D’Ottaviano, I. M. L., Mundici, D., Algebraic Foundations of Many-Valued Reasoning, Kluwer, Dordrecht, 1999. (1999) MR1786097
- Cornish, W. H., Constructions for BCK-algebras, Math. Sem. Notes Kobe Univ. 11 (1983), 1–7. (1983) Zbl0553.03043MR0742903
- Di Nola, A., Dvurečenskij, A., 10.1016/j.apal.2009.05.003, Annals of Pure and Applied Logic 161, 2 (2009), 161–173. (2009) Zbl1212.06028MR2552736DOI10.1016/j.apal.2009.05.003
- Esteva, F., Godo, L., 10.1016/S0165-0114(01)00098-7, Fuzzy Sets and Systems 124 (2001), 271–288. (2001) MR1860848DOI10.1016/S0165-0114(01)00098-7
- Fleischer, I., 10.1007/BF02024400, Acta Math. Acad. Sci. Hungar. 6 (1955), 463–465. (1955) Zbl0070.26301MR0075913DOI10.1007/BF02024400
- Freese, R., McKenzie, R., Commutator Theory for Congruence Modular Varieties, London Mathematical Society Lecture Notes, 125, Cambridge University Press, Cambridge, 1987. (1987) Zbl0636.08001MR0909290
- Frink, O., 10.1215/S0012-7094-62-02951-4, Duke Math. J. 29 (1962), 505–514. (1962) Zbl0114.01602MR0140449DOI10.1215/S0012-7094-62-02951-4
- Galatos, N., Jipsen, P., Kowalski, T., Ono, H., Residuated Lattices: An Algebraic Glimpse on Substructural Logics, Elsevier, Amsterdam, 2007. (2007)
- Grätzer, G., Lattice Theory: First Concepts and Distributive Lattices, W. H. Freeman and Co., San Francisco, 1971. (1971) MR0321817
- Gumm, H. P., Geometrical Methods in Congruence Modular Algebras, Memoirs Amer. Math. Soc., Amer. Math. Soc., 1983. (1983) Zbl0547.08006MR0714648
- Jónsson, B., Tsinakis, C., 10.1023/B:STUD.0000037130.29400.97, Studia Logica 77 (2004), 267–292. (2004) Zbl1072.06003MR2080242DOI10.1023/B:STUD.0000037130.29400.97
- Kowalski, T., Paoli, F., On some properties of quasi-MV algebras and square root quasi-MV algebras, III, Reports on Mathematical Logic 45 (2010), 161–199. (2010) MR2790758
- Kowalski, T., Paoli, F., 10.1007/s00012-011-0137-0, Algebra Universalis 65, 4 (2011), 371–391. (2011) Zbl1233.08007MR2817559DOI10.1007/s00012-011-0137-0
- Kowalski, T., Paoli, F., Spinks, M., 10.2178/jsl/1318338848, Journal of Symbolic Logic 76, 4 (2011), 1261–1286. (2011) Zbl1254.03119MR2895395DOI10.2178/jsl/1318338848
- Ledda, A., Konig, M., Paoli, F., Giuntini, R., 10.1007/s11225-006-7202-2, Studia Logica 82, 2 (2006), 245–270. (2006) Zbl1102.06010MR2221525DOI10.1007/s11225-006-7202-2
- Leech, J., 10.1007/BF01243872, Algebra Universalis 26 (1989), 48–72. (1989) Zbl0669.06006MR0981425DOI10.1007/BF01243872
- Leech, J., 10.1007/BF02574077, Semigroup Forum 52 (1996), 7–24. (1996) Zbl0844.06003MR1363525DOI10.1007/BF02574077
- Paoli, F., Ledda, A., Kowalski, T., Spinks, M., 10.1142/S0218196714500179, International Journal of Algebra and Computation 24, 3 (2014), 375–411. (2014) MR3211909DOI10.1142/S0218196714500179
- Petrich, I., Lectures on semigroups, Wiley and Sons, New York, 1977. (1977)
- Salibra, A., Ledda, A., Paoli, F., Kowalski, T., 10.1007/s00012-013-0223-6, Algebra Universalis 69, 2 (2013), 113–138. (2013) Zbl1284.06033MR3037008DOI10.1007/s00012-013-0223-6
- Sankappanavar, H. P., 10.1007/BF02488042, Algebra Universalis 9 (1979), 304–316. (1979) Zbl0424.06001MR0544854DOI10.1007/BF02488042
- Spinks, M., On the Theory of Pre-BCK Algebras, Ph.D. Thesis, Monash University, 2003. (2003)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.