Effective homology for homotopy colimit and cofibrant replacement
Archivum Mathematicum (2014)
- Volume: 050, Issue: 5, page 273-286
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topFilakovský, Marek. "Effective homology for homotopy colimit and cofibrant replacement." Archivum Mathematicum 050.5 (2014): 273-286. <http://eudml.org/doc/262212>.
@article{Filakovský2014,
abstract = {We extend the notion of simplicial set with effective homology presented in [22] to diagrams of simplicial sets. Further, for a given finite diagram of simplicial sets $X \colon \mathcal \{I\}\rightarrow \mbox\{sSet\}$ such that each simplicial set $X(i)$ has effective homology, we present an algorithm computing the homotopy colimit $\mbox\{hocolim\}\,X$ as a simplicial set with effective homology. We also give an algorithm computing the cofibrant replacement $X^\{\mbox\{cof\}\}$ of $X$ as a diagram with effective homology. This is applied to computing of equivariant cohomology operations.},
author = {Filakovský, Marek},
journal = {Archivum Mathematicum},
keywords = {homotopy colimit; cofibrant replacement; effective homology; equivariant; homotopy colimit; cofibrant replacement; effective homology; equivariant},
language = {eng},
number = {5},
pages = {273-286},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Effective homology for homotopy colimit and cofibrant replacement},
url = {http://eudml.org/doc/262212},
volume = {050},
year = {2014},
}
TY - JOUR
AU - Filakovský, Marek
TI - Effective homology for homotopy colimit and cofibrant replacement
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 5
SP - 273
EP - 286
AB - We extend the notion of simplicial set with effective homology presented in [22] to diagrams of simplicial sets. Further, for a given finite diagram of simplicial sets $X \colon \mathcal {I}\rightarrow \mbox{sSet}$ such that each simplicial set $X(i)$ has effective homology, we present an algorithm computing the homotopy colimit $\mbox{hocolim}\,X$ as a simplicial set with effective homology. We also give an algorithm computing the cofibrant replacement $X^{\mbox{cof}}$ of $X$ as a diagram with effective homology. This is applied to computing of equivariant cohomology operations.
LA - eng
KW - homotopy colimit; cofibrant replacement; effective homology; equivariant; homotopy colimit; cofibrant replacement; effective homology; equivariant
UR - http://eudml.org/doc/262212
ER -
References
top- Bousfield, A.K., Kan, D.M., 10.1007/978-3-540-38117-4_12, Lecture Notes in Math., no. 304, Springer, 1972. (1972) Zbl0259.55004MR0365573DOI10.1007/978-3-540-38117-4_12
- Bredon, G., Equivariant cohomology theories, Lecture Notes in Math., no. 34, Springer-Verlag, Berlin-New York, 1967. (1967) Zbl0162.27202MR0214062
- Brown, R., The twisted Eilenberg-Zilber theorem, 1965 Simposio di Topologia (Messina, 1964), 1965, pp. 33–37. (1965) MR0220273
- Čadek, M., Krčál, M., Matoušek, J., Sergeraert, F., Vokřínek, L., Wagner, U., 10.1145/2597629, J. ACM 61 (2014), article no. 17. (2014) Zbl1295.68196MR3215297DOI10.1145/2597629
- Čadek, M., Krčál, M., Matoušek, J., Vokřínek, L., Wagner, U., 10.1137/120899029, SIAM J. Comput. 43 (2014), 1728–1780. (2014) MR3268623DOI10.1137/120899029
- Čadek, M., Krčál, M., Vokřínek, L., Algorithmic solvability of lifting extension problem, arXiv:1307.6444, 2013.
- Dugger, D., A primer on homotopy colimits, http://math.uoregon.edu/~ddugger/hocolim.pdf, 2008.
- Dwyer, W., Hirschhorn, P., Kan, D., Smith, J., Homotopy Limit Functors on Model Categories and Homotopical Categories, Math. Surveys Monogr., vol. 113, American Mathematical Society, Providence, 2004. (2004) Zbl1072.18012MR2102294
- Dwyer, W.G., Kan, D.M., 10.1016/1385-7258(84)90015-5, Nederl. Akad. Wetensch. Indag. Math. 46 (2) (1984), 139–146. (1984) Zbl0555.55018MR0749527DOI10.1016/1385-7258(84)90015-5
- Eilenberg, S., MacLane, S., On the groups , I, , Ann. of Math. (2) 58 (1953), 55–106. (1953) Zbl0050.39304MR0056295
- Eilenberg, S., MacLane, S., On the groups , II, , Ann. of Math. (2) 60 (1954), 49–139. (1954) Zbl0055.41704MR0065163
- Elmendorf, A.D., 10.1090/S0002-9947-1983-0690052-0, Trans. Amer. Math. Soc. 277 (1983), 275–284. (1983) MR0690052DOI10.1090/S0002-9947-1983-0690052-0
- Filakovský, M., Vokřínek, L., Are two maps homotopic? An algorithmic viewpoint, arXiv:1312.2337, 2013.
- Goerss, P.G., Jardine, J.F., Simplicial homotopy theory, Birkhauser, Boston-Basel-Berlin, 1999. (1999) Zbl0949.55001MR1711612
- Gugenheim, V.K.A.M., On the chain-complex of a fibration, Illinois J. Math. 16 (1972), 398–414. (1972) Zbl0238.55015MR0301736
- Heras, J., Effective homology for the pushout of simplicial sets, Proceedings XII Encuentros de Algebra Computacional y Aplicaciones (EACA 2010), 2010, pp. 152–156. (2010)
- Isaacson, S.B., Exercises on homotopy colimits, http://math.mit.edu/~mbehrens/TAGS/Isaacson_exer.pdf.
- Krčál, M., Matoušek, J., Sergeraert, F., Polynomial-time homology for simplicial Eilenberg-MacLane spaces, arXiv:1201.6222, 2012. Zbl1295.68201MR3124946
- May, J.P., Simplicial Objects in Algebraic Topology, Chicago Lectures in Math., Univ. Chicago Press, 1992, 1992 reprint of 1967 original. (1992) Zbl0769.55001MR1206474
- May, J.P., Piacenza, R.J., Cole, M., Equivariant homotopy and cohomology theory: Dedicated to the memory of Robert J. Piacenza, Providence, R.I.: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1996. (1996) MR1413302
- Riehl, E., Categorical Homotopy Theory, Cambridge University Press, 2014. (2014) MR3221774
- Rubio, J., Sergeraert, F., Constructive Homological Algebra and Applications, Tech. report, Written in 2006 for a MAP Summer School at the University of Genova, 2012, arXiv:1208.3816v2. (2012)
- Shih, W., Homologie des espaces fibrés, Publications Mathématiques de l'IHÉS 13 (1962), 5–87. (1962) Zbl0105.16903MR0144348
- Stephan, M., On equivariant homotopy theory for model categories, arXiv:1308.0856, 2013.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.