Page 1 Next

Displaying 1 – 20 of 59

Showing per page

A formula for topology/deformations and its significance

Ruth Lawrence, Dennis Sullivan (2014)

Fundamenta Mathematicae

The formula is e = ( a d e ) b + i = 0 ( B i ) / i ! ( a d e ) i ( b - a ) , with ∂a + 1/2 [a,a] = 0 and ∂b + 1/2 [b,b] = 0, where a, b and e in degrees -1, -1 and 0 are the free generators of a completed free graded Lie algebra L[a,b,e]. The coefficients are defined by x / ( e x - 1 ) = n = 0 B / n ! x . The theorem is that ∙ this formula for ∂ on generators extends to a derivation of square zero on L[a,b,e]; ∙ the formula for ∂e is unique satisfying the first property, once given the formulae for ∂a and ∂b, along with the condition that the “flow” generated by e moves a to b in unit...

Double complexes and vanishing of Novikov cohomology

Hüttemann, Thomas (2011)

Serdica Mathematical Journal

2010 Mathematics Subject Classification: Primary 18G35; Secondary 55U15.We consider non-standard totalisation functors for double complexes, involving left or right truncated products. We show how properties of these imply that the algebraic mapping torus of a self map h of a cochain complex of finitely presented modules has trivial negative Novikov cohomology, and has trivial positive Novikov cohomology provided h is a quasi-isomorphism. As an application we obtain a new and transparent proof that...

Effective chain complexes for twisted products

Marek Filakovský (2012)

Archivum Mathematicum

In the paper weak sufficient conditions for the reduction of the chain complex of a twisted cartesian product F × τ B to a chain complex of free finitely generated abelian groups are found.

Effective homology for homotopy colimit and cofibrant replacement

Marek Filakovský (2014)

Archivum Mathematicum

We extend the notion of simplicial set with effective homology presented in [22] to diagrams of simplicial sets. Further, for a given finite diagram of simplicial sets X : sSet such that each simplicial set X ( i ) has effective homology, we present an algorithm computing the homotopy colimit hocolim X as a simplicial set with effective homology. We also give an algorithm computing the cofibrant replacement X cof of X as a diagram with effective homology. This is applied to computing of equivariant cohomology operations....

Explicit cogenerators for the homotopy category of projective modules over a ring

Amnon Neeman (2011)

Annales scientifiques de l'École Normale Supérieure

Let R be a ring. In two previous articles [12, 14] we studied the homotopy category 𝐊 ( R - Proj ) of projective R -modules. We produced a set of generators for this category, proved that the category is 1 -compactly generated for any ring R , and showed that it need not always be compactly generated, but is for sufficiently nice R . We furthermore analyzed the inclusion j ! : 𝐊 ( R - Proj ) 𝐊 ( R - Flat ) and the orthogonal subcategory 𝒮 = 𝐊 ( R - Proj ) . And we even showed that the inclusion 𝒮 𝐊 ( R - Flat ) has a right adjoint; this forces some natural map to be an equivalence...

Currently displaying 1 – 20 of 59

Page 1 Next