Some application of the implicit function theorem to the stationary Navier-Stokes equations
Annales Polonici Mathematici (1991)
- Volume: 54, Issue: 2, page 93-109
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. S. Berger, Nonlinearity and Functional Analysis, Benjamin, 1977. Zbl0368.47001
- [2] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), p. 339. Zbl0219.46015
- [3] C. Foiaş et J. C. Saut, Remarques sur les équations de Navier-Stokes stationnaires, Ann. Scuola Norm. Sup. Pisa (5) 1 (1983), p. 186. Zbl0546.35058
- [4] C. Foiaş and R. Temam, Structure of the set of stationary solutions of the Navier-Stokes equations, Comm. Pure. Appl. Math. 30 (1977), 149-164. Zbl0335.35077
- [5] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris 1969. Zbl0189.40603
- [6] K. Maurin, Analysis II, PWN, Warszawa 1980.
- [7] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute, New York 1974. Zbl0286.47037
- [8] W. Rudin, Functional Analysis, McGraw-Hill, New York 1973, Chap. 4.
- [9] J. C. Saut, Generic properties of nonlinear boundary value problems, in: Partial Differential Equations, Banach Center Publ. 10, PWN, Warszawa 1983, 331-351.
- [10] R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam 1979.