Stability for a certain class of numerical methods – abstract approach and application to the stationary Navier-Stokes equations
- [1] Department of Mathematics and Computer Sciences, University of Łódź, Poland
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: 4, page 651-743
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topMotyl, Elżbieta. "Stability for a certain class of numerical methods – abstract approach and application to the stationary Navier-Stokes equations." Annales de la faculté des sciences de Toulouse Mathématiques 21.4 (2012): 651-743. <http://eudml.org/doc/250996>.
@article{Motyl2012,
abstract = {We consider some abstract nonlinear equations in a separable Hilbert space $H$ and some class of approximate equations on closed linear subspaces of $H$. The main result concerns stability with respect to the approximation of the space $H$. We prove that, generically, the set of all solutions of the exact equation is the limit in the sense of the Hausdorff metric over $H$ of the sets of approximate solutions, over some filterbase on the family of all closed linear subspaces of $H$. The abstract results are applied to the classical Galerkin method and to the Holly method for the stationary Navier-Stokes equations for incompressible fluid in 2 and 3-dimensional bounded domains.},
affiliation = {Department of Mathematics and Computer Sciences, University of Łódź, Poland},
author = {Motyl, Elżbieta},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {10},
number = {4},
pages = {651-743},
publisher = {Université Paul Sabatier, Toulouse},
title = {Stability for a certain class of numerical methods – abstract approach and application to the stationary Navier-Stokes equations},
url = {http://eudml.org/doc/250996},
volume = {21},
year = {2012},
}
TY - JOUR
AU - Motyl, Elżbieta
TI - Stability for a certain class of numerical methods – abstract approach and application to the stationary Navier-Stokes equations
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/10//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 4
SP - 651
EP - 743
AB - We consider some abstract nonlinear equations in a separable Hilbert space $H$ and some class of approximate equations on closed linear subspaces of $H$. The main result concerns stability with respect to the approximation of the space $H$. We prove that, generically, the set of all solutions of the exact equation is the limit in the sense of the Hausdorff metric over $H$ of the sets of approximate solutions, over some filterbase on the family of all closed linear subspaces of $H$. The abstract results are applied to the classical Galerkin method and to the Holly method for the stationary Navier-Stokes equations for incompressible fluid in 2 and 3-dimensional bounded domains.
LA - eng
UR - http://eudml.org/doc/250996
ER -
References
top- Adams (R.).— Sobolev spaces, Academic Press (1975). Zbl1098.46001MR450957
- Deimling (K.).— Nonlinear Functional Analysis, Springer-Verlag (1980). Zbl0559.47040MR787404
- Foiaş (C.), Saut (J.C.).— Remarques sur les équations de Navier-Stokes stationaires, Ann. Scuola Norm. Sup. Pisa, Sèrie IV, 10, p. 19-177 (1983). Zbl0546.35058MR713114
- Foiaş (C.), Temam (R.).— Structure of the set of stationary solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. Vol. XXX, p. 149-164 (1977). Zbl0335.35077MR435626
- Foiaş (C.), Temam R..— Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation, Ann. Scuola Norm. Sup. Pisa, Sèrie IV, 5, p. 29-63 (1978). Zbl0384.35047MR481645
- Girault (V.), Raviart (P.A.).— Finite element methods for Navier-Stokes equations, Springer-Verlag, Berlin – Heidelberg – New York - Tokyo (1986). Zbl0585.65077MR851383
- Holly (K.).— Some application of the implicit function theorem to the stationary Navier-Stokes equations, Ann. Polon. Math. LIV.2, p. 93-100 (1991). Zbl0732.76022MR1104732
- Holly (K.), Motyl (E.).— Inversion of the – operator and three numerical methods in hydrodynamics, Selected problems of Mathematics, Cracow University of Technology, p. 35-94 (1995). MR1438065
- Kołodziej (W.).— Wybrane rozdziały analizy matematycznej, Biblioteka Matematyczna, 36, Warszawa (1982). Zbl0553.46001
- Lions (J.L.).— Quelques méthodes de résolution des problemes aux limites non linèaires, Dunod, Paris (1969). Zbl0189.40603
- Marcinkowska (H.).— Dystrybucje, przestrzenie Sobolewa, równania różniczkowe, Biblioteka Matematyczna, 75, Warszawa (1993).
- Motyl (E.).— The stationary Navier-Stokes equations – application of the implicit function theorem to the problem of stability, Univ. Iagell. Acta Math. XXXVIII, p. 227-277 (2000). Zbl1007.76041MR1812117
- Motyl (E.).— A new method of calculation of the pressure in the stationary Navier-Stokes equations, J. Comp. and Appl. Math. 189, p. 207-219 (2006). Zbl1089.35045MR2202974
- Nirenberg (L.).— Topics in nonlinear functional analysis, New York (1974). Zbl0286.47037MR488102
- Rudin (W.).— Functional analysis, McGraw-Hill Book Company, New York (1973). Zbl0867.46001MR365062
- Saut (J.C.), Temam (R.).— Generic properties of nonlinear boundary value problems, Comm. Partial Differential Equations, 4, p. 293-319 (1979). Zbl0462.35016MR522714
- Saut (J.C.), Temam (R.).— Generic properties of Navier-Stokes equations: Genericity with respect to the boundary values, Indiana Univ. Math. J. 29, p. 427-446 (1980). Zbl0445.76023MR570691
- Smale (S.).— An infinite-dimensional version of Sard’s theorem, Amer. J. Math. 87, p. 861-866 (1965). Zbl0143.35301MR185604
- Temam (R.).— Navier-Stokes equations. Theory and numerical analysis, North Holland Publishing Company, Amsterdam – New York – Oxford (1979). Zbl0426.35003MR603444
- Temam (R.).— Navier-Stokes equations and nonlinear functional analysis, SIAM, Philadelphia, Pensylvania (1995). Zbl0833.35110MR1318914
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.