The super complex Frobenius theorem

C. Denson Hill; Santiago R. Simanca

Annales Polonici Mathematici (1991)

  • Volume: 55, Issue: 1, page 139-155
  • ISSN: 0066-2216

Abstract

top
We formulate and prove a super analogue of the complex Frobenius theorem of Nirenberg.

How to cite

top

C. Denson Hill, and Santiago R. Simanca. "The super complex Frobenius theorem." Annales Polonici Mathematici 55.1 (1991): 139-155. <http://eudml.org/doc/262243>.

@article{C1991,
abstract = {We formulate and prove a super analogue of the complex Frobenius theorem of Nirenberg.},
author = {C. Denson Hill, Santiago R. Simanca},
journal = {Annales Polonici Mathematici},
keywords = {graded-commutative algebras; supermanifolds; Levi flat super CR structure; locally direct sheaf; super real integrable distribution; super complex Frobenius structure; nilpotent element; derivations; real Frobenius theorem; complex Frobenius theorem},
language = {eng},
number = {1},
pages = {139-155},
title = {The super complex Frobenius theorem},
url = {http://eudml.org/doc/262243},
volume = {55},
year = {1991},
}

TY - JOUR
AU - C. Denson Hill
AU - Santiago R. Simanca
TI - The super complex Frobenius theorem
JO - Annales Polonici Mathematici
PY - 1991
VL - 55
IS - 1
SP - 139
EP - 155
AB - We formulate and prove a super analogue of the complex Frobenius theorem of Nirenberg.
LA - eng
KW - graded-commutative algebras; supermanifolds; Levi flat super CR structure; locally direct sheaf; super real integrable distribution; super complex Frobenius structure; nilpotent element; derivations; real Frobenius theorem; complex Frobenius theorem
UR - http://eudml.org/doc/262243
ER -

References

top
  1. [1] M. Eastwood and C. LeBrun, Thickening and supersymmetric extensions of complex manifolds, Amer. J. Math. 108 (1986), 1177-1192. Zbl0619.53039
  2. [2] P. Freund, Introduction to Supersymmetry, Cambridge Monographs Math. Phys., Cambridge 1986. Zbl0601.53067
  3. [3] C. D. Hill and S. R. Simanca, Newlander-Nirenberg theorem on supermanifolds with boundary, preprint, 1990. Zbl0842.32008
  4. [4] B. Kostant, Graded manifolds, graded Lie algebras, and prequantization, in: Lecture Notes in Math. 570, Springer, 1977, 177-306. 
  5. [5] C. LeBrun and M. Rothstein, Moduli of super Riemann surfaces, Comm. Math. Phys. 117 (1988), 159-176. Zbl0662.58008
  6. [6] D. A. Leites, Introduction to the theory of supermanifolds, Russian Math. Surveys 35 (1980), 3-57. Zbl0439.58007
  7. [7] Yu. I. Manin, Gauge Field Theory and Complex Geometry, Grundlehren Math. Wiss. 289, Springer, 1988 (Russian original published by Nauka, Moscow 1984). 
  8. [8] A. McHugh, A Newlander-Nirenberg theorem for super-manifolds, J. Math. Phys. 30 (5) (1989), 1039-1042. Zbl0679.58008
  9. [9] L. Nirenberg, A Complex Frobenius Theorem, Seminars on Analytic Functions, Vol. 1, Institute of Advanced Study, Princeton 1958. Zbl0099.37502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.