The super complex Frobenius theorem
C. Denson Hill; Santiago R. Simanca
Annales Polonici Mathematici (1991)
- Volume: 55, Issue: 1, page 139-155
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Eastwood and C. LeBrun, Thickening and supersymmetric extensions of complex manifolds, Amer. J. Math. 108 (1986), 1177-1192. Zbl0619.53039
- [2] P. Freund, Introduction to Supersymmetry, Cambridge Monographs Math. Phys., Cambridge 1986. Zbl0601.53067
- [3] C. D. Hill and S. R. Simanca, Newlander-Nirenberg theorem on supermanifolds with boundary, preprint, 1990. Zbl0842.32008
- [4] B. Kostant, Graded manifolds, graded Lie algebras, and prequantization, in: Lecture Notes in Math. 570, Springer, 1977, 177-306.
- [5] C. LeBrun and M. Rothstein, Moduli of super Riemann surfaces, Comm. Math. Phys. 117 (1988), 159-176. Zbl0662.58008
- [6] D. A. Leites, Introduction to the theory of supermanifolds, Russian Math. Surveys 35 (1980), 3-57. Zbl0439.58007
- [7] Yu. I. Manin, Gauge Field Theory and Complex Geometry, Grundlehren Math. Wiss. 289, Springer, 1988 (Russian original published by Nauka, Moscow 1984).
- [8] A. McHugh, A Newlander-Nirenberg theorem for super-manifolds, J. Math. Phys. 30 (5) (1989), 1039-1042. Zbl0679.58008
- [9] L. Nirenberg, A Complex Frobenius Theorem, Seminars on Analytic Functions, Vol. 1, Institute of Advanced Study, Princeton 1958. Zbl0099.37502