Page 1

Displaying 1 – 18 of 18

Showing per page

A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis

Hongfen Yuan (2017)

Czechoslovak Mathematical Journal

Using a distributional approach to integration in superspace, we investigate a Cauchy-Pompeiu integral formula in super Dunkl-Clifford analysis and several related results, such as Stokes formula, Morera's theorem and Painlevé theorem for super Dunkl-monogenic functions. These results are nice generalizations of well-known facts in complex analysis.

Differential calculus on almost commutative algebras and applications to the quantum hyperplane

Cătălin Ciupală (2005)

Archivum Mathematicum

In this paper we introduce a new class of differential graded algebras named DG ρ -algebras and present Lie operations on this kind of algebras. We give two examples: the algebra of forms and the algebra of noncommutative differential forms of a  ρ -algebra. Then we introduce linear connections on a  ρ -bimodule M over a  ρ -algebra  A and extend these connections to the space of forms from A to M . We apply these notions to the quantum hyperplane.

General construction of Banach-Grassmann algebras

Vladimir G. Pestov (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We show that a free graded commutative Banach algebra over a (purely odd) Banach space E is a Banach-Grassmann algebra in the sense of Jadczyk and Pilch if and only if E is infinite-dimensional. Thus, a large amount of new examples of separable Banach-Grassmann algebras arise in addition to the only one example previously known due to A. Rogers.

Introduction to Graded Geometry, Batalin-Vilkovisky Formalism and their Applications

Jian Qiu, Maxim Zabzine (2011)

Archivum Mathematicum

These notes are intended to provide a self-contained introduction to the basic ideas of finite dimensional Batalin-Vilkovisky (BV) formalism and its applications. A brief exposition of super- and graded geometries is also given. The BV–formalism is introduced through an odd Fourier transform and the algebraic aspects of integration theory are stressed. As a main application we consider the perturbation theory for certain finite dimensional integrals within BV-formalism. As an illustration we present...

Systèmes dynamiques contraints : l'approche homologique

Michel Dubois-Violette (1987)

Annales de l'institut Fourier

On décrit une approche homologique des systèmes dynamiques contraints. Cette approche, directement inspirée des travaux de D. McMullan et de M. Henneaux concernant le formalisme de Batalin, Fradkin et Vilkovisky, contient une interprétation des fantômes et de leurs conjugués. Dans le cadre des systèmes dans l’espace des phases, la construction se fait en deux étapes. La première étape consiste à construire une algèbre différentielle graduée dont la cohomologie en degré zéro est l’espace des observables...

The super complex Frobenius theorem

C. Denson Hill, Santiago R. Simanca (1991)

Annales Polonici Mathematici

We formulate and prove a super analogue of the complex Frobenius theorem of Nirenberg.

Currently displaying 1 – 18 of 18

Page 1