Injectivity onto a star-shaped set for local homeomorphisms in n-space
Gianluca Gorni; Gaetano Zampieri
Annales Polonici Mathematici (1994)
- Volume: 59, Issue: 2, page 171-196
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topGianluca Gorni, and Gaetano Zampieri. "Injectivity onto a star-shaped set for local homeomorphisms in n-space." Annales Polonici Mathematici 59.2 (1994): 171-196. <http://eudml.org/doc/262246>.
@article{GianlucaGorni1994,
abstract = {We provide a number of either necessary and sufficient or only sufficient conditions on a local homeomorphism defined on an open, connected subset of the n-space to be actually a homeomorphism onto a star-shaped set. The unifying idea is the existence of "auxiliary" scalar functions that enjoy special behaviours along the paths that result from lifting the half-lines that radiate from a point in the codomain space. In our main result this special behaviour is monotonicity, and the auxiliary function can be seen as a Lyapunov function for a suitable dynamical system having the lifted paths as trajectories.},
author = {Gianluca Gorni, Gaetano Zampieri},
journal = {Annales Polonici Mathematici},
keywords = {global invertibility; local homeomorphisms; star-shaped sets; line-lifting; Lyapunov functions; injectivity; local homeomorphism; star-shaped},
language = {eng},
number = {2},
pages = {171-196},
title = {Injectivity onto a star-shaped set for local homeomorphisms in n-space},
url = {http://eudml.org/doc/262246},
volume = {59},
year = {1994},
}
TY - JOUR
AU - Gianluca Gorni
AU - Gaetano Zampieri
TI - Injectivity onto a star-shaped set for local homeomorphisms in n-space
JO - Annales Polonici Mathematici
PY - 1994
VL - 59
IS - 2
SP - 171
EP - 196
AB - We provide a number of either necessary and sufficient or only sufficient conditions on a local homeomorphism defined on an open, connected subset of the n-space to be actually a homeomorphism onto a star-shaped set. The unifying idea is the existence of "auxiliary" scalar functions that enjoy special behaviours along the paths that result from lifting the half-lines that radiate from a point in the codomain space. In our main result this special behaviour is monotonicity, and the auxiliary function can be seen as a Lyapunov function for a suitable dynamical system having the lifted paths as trajectories.
LA - eng
KW - global invertibility; local homeomorphisms; star-shaped sets; line-lifting; Lyapunov functions; injectivity; local homeomorphism; star-shaped
UR - http://eudml.org/doc/262246
ER -
References
top- [1] A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl. 93 (1973), 231-247. Zbl0288.35020
- [2] V. I. Arnol'd, Ordinary Differential Equations, 3rd ed., Springer, 1992.
- [3] S. Banach and S. Mazur, Über mehrdeutige stetige Abbildungen, Studia Math. 5 (1934), 174-178. Zbl60.1227.03
- [4] N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems, Springer, 1970.
- [5] F. Browder, Covering spaces, fiber spaces and local homeomorphisms, Duke Math. J. 21 (1954), 329-336. Zbl0056.16602
- [6] R. Caccioppoli, Sugli elementi uniti delle trasformazioni funzionali: un teorema di esistenza e di unicità ed alcune sue applicazioni, Rend. Sem. Mat. Univ. Padova 3 (1932), 1-15.
- [7] L. M. Drużkowski, The Jacobian Conjecture, Preprint 429, Institute of Mathematics, Jagiellonian University, Kraków, 1990. Zbl0839.13012
- [8] P. L. Duren, Univalent Functions, Springer, 1983.
- [9] D. Gale and H. Nikaido, The Jacobian matrix and global univalence of mappings, Math. Ann. 159 (1965), 81-93. Zbl0158.04903
- [10] G. Gorni, A criterion of invertibility in the large for local diffeomorphisms between Banach spaces, Nonlinear Anal. 21 (1993), 43-47. Zbl0827.46039
- [11] J. Hadamard, Sur les transformations ponctuelles, Bull. Soc. Math. France 34 (1906), 71-84. Zbl37.0672.02
- [12] P. Lévy, Sur les fonctions de lignes implicites, ibid. 48 (1920), 13-27. Zbl47.0381.01
- [13] G. H. Meisters, Inverting polynomial maps of n-space by solving differential equations, in: Fink, Miller, Kliemann (eds.), Delay and Differential Equations, Proceedings in Honour of George Seifert on his retirement, World Sci., 1992, 107-166. Zbl0826.34046
- [14] G. H. Meisters and C. Olech, Locally one-to-one mappings and a classical theorem on schlicht functions, Duke Math. J. 30 (1963), 63-80. Zbl0112.37702
- [15] G. H. Meisters and C. Olech, Solution of the global asymptotic stability Jacobian conjecture for the polynomial case, in: Analyse Mathématique et Applications, Gauthier-Villars, Paris, 1988, 373-381. Zbl0668.34048
- [16] C. Olech, Global diffeomorphism questions and differential equations, in: Qualitative Theory of Differential Equations, Szeged, 1988, Colloq. Math. Soc. János Bolyai 53, North-Holland, 1990, 465-471. Zbl0754.34049
- [17] J. M. Ortega and W. C. Rheinboldt, Iterative Solutions of Nonlinear Equations in Several Variables, Academic Press, 1970. Zbl0241.65046
- [18] T. Parthasarathy, On Global Univalence Theorems, Lecture Notes in Math. 977, Springer, 1983. Zbl0506.90001
- [19] R. Plastock, Homeomorphisms between Banach spaces, Trans. Amer. Math. Soc. 200 (1974), 169-183. Zbl0291.54009
- [20] P. J. Rabier, On global diffeomorphisms of Euclidian space, Nonlinear Anal. 21 (1993), 925-947. Zbl0807.57017
- [21] M. Rădulescu and S. Rădulescu, Global inversion theorems and applications to differential equations, ibid. 4 (1980), 951-965. Zbl0441.46036
- [22] W. C. Rheinboldt, Local mapping relations and global implicit function theorems, Trans. Amer. Math. Soc. 138 (1969), 183-198. Zbl0175.45201
- [23] J. Sotomayor, Inversion of smooth mappings, Z. Angew. Math. Phys. 41 (1990), 306-310.
- [24] M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish, Houston, Tex., 1970, 1979.
- [25] T. Ważewski, Sur l'évaluation du domaine d'existence de fonctions implicites réelles ou complexes, Ann. Soc. Polon. Math. 20 (1947), 81-120. Zbl0032.05601
- [26] G. Zampieri, Finding domains of invertibility for smooth functions by means of attraction basins, J. Differential Equations 104 (1993), 11-19. Zbl0778.34043
- [27] G. Zampieri, Diffeomorphisms with Banach space domains, Nonlinear Anal. 19 (1992), 923-932. Zbl0807.46044
- [28] G. Zampieri and G. Gorni, On the Jacobian conjecture for global asymptotic stability, J. Dynamics Differential Equations 4 (1992), 43-55. Zbl0739.34047
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.