Dynamical systems with multiplicative perturbations: the strong convergence of measures
Annales Polonici Mathematici (1993)
- Volume: 58, Issue: 1, page 85-93
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. F. Barnsley and S. Demko, Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A 399 (1985), 243-275. Zbl0588.28002
- [2] M. F. Barnsley, V. Ervin, D. Hardin and J. Lancaster, Solution of an inverse problem for fractals and other sets, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 1975-1977. Zbl0613.28008
- [3] K. Horbacz, Dynamical systems with multiplicative perturbations, Ann. Polon. Math. 50 (1989), 93-102. Zbl0687.60064
- [4] K. Horbacz, Asymptotic stability of dynamical systems with multiplicative perturbations, ibid. 50 (1989), 209-218. Zbl0703.47033
- [5] A. Lasota and J. Tyrcha, On the strong convergence to equilibrium for randomly perturbed dynamical systems, ibid. 53 (1991), 79-89. Zbl0722.60068
- [6] A. Lasota and M. C. Mackey, Stochastic perturbation of dynamical systems: The weak convergence of measures, J. Math. Anal. Appl. 138 (1989), 232-248. Zbl0668.93081
- [7] A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge Univ. Press, Cambridge 1985. Zbl0606.58002
- [8] M. Podhorodyński, Stability of Markov processes, Univ. Iagell. Acta Math. 27 (1988), 285-296.