Stability of Markov processes nonhomogeneous in time
Annales Polonici Mathematici (1999)
- Volume: 71, Issue: 1, page 47-59
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. F. Barnsley, Fractals Everywhere, Academic Press, New York, 1988.
- [2] M. F. Barnsley, S. G. Demko, J. H. Elton and J. S. Geronimo, Invariant measures arising from iterated function systems with place dependent probabilities, Ann. Inst. Henri Poincaré 24 (1988), 367-394. Zbl0653.60057
- [3] R. Fortet et B. Mourier, Convergence de la répartition empirique vers la répartition théorétique, Ann. Sci. École Norm. Sup. 70 (1953), 267-285. Zbl0053.09601
- [4] K. Horbacz, Dynamical systems with multiplicative perturbations: the strong convergence of measures, Ann. Polon. Math. 58 (1993), 85-93. Zbl0782.47007
- [5] J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747. Zbl0598.28011
- [6] A. Lasota, From fractals to stochastic differential equations, in: Chaos - The Interplay Between Stochastic and Deterministic Behaviour (Karpacz '95), Lecture Notes in Phys. 457, Springer, 1995, 235-255.
- [7] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise-Stochastic Aspects of Dynamics, Springer, 1994. Zbl0784.58005
- [8] A. Lasota and M. C. Mackey, Stochastic perturbation of dynamical systems: the weak convergence of measures, J. Math. Anal. Appl. 138 (1989), 232-248. Zbl0668.93081
- [9] A. Lasota and J. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41-77. Zbl0804.47033
- [10] K. Łoskot and R. Rudnicki, Limit theorems for stochastically perturbed dynamical systems, J. Appl. Probab. 32 (1995), 459-469. Zbl0829.60057
- [11] K. Oczkowicz, Asymptotic stability of Markov operators corresponding to the dynamical systems with multiplicative perturbations, Ann. Math. Sil. 7 (1993), 99-108. Zbl0804.58030