On the dependence of the Bergman function on deformations of the Hartogs domain
Annales Polonici Mathematici (1991)
- Volume: 55, Issue: 1, page 287-300
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topZbigniew Pasternak-Winiarski. "On the dependence of the Bergman function on deformations of the Hartogs domain." Annales Polonici Mathematici 55.1 (1991): 287-300. <http://eudml.org/doc/262271>.
@article{ZbigniewPasternak1991,
abstract = {We apply the Rudin idea to represent the Bergman kernel of the Hartogs domain as the sum of a series of weighted Bergman functions in the study of the dependence of this kernel on deformations of the domain. We prove that the Bergman function depends smoothly on the function defining the Hartogs domain.},
author = {Zbigniew Pasternak-Winiarski},
journal = {Annales Polonici Mathematici},
keywords = {Hartogs domain; Bergman kernel function},
language = {eng},
number = {1},
pages = {287-300},
title = {On the dependence of the Bergman function on deformations of the Hartogs domain},
url = {http://eudml.org/doc/262271},
volume = {55},
year = {1991},
}
TY - JOUR
AU - Zbigniew Pasternak-Winiarski
TI - On the dependence of the Bergman function on deformations of the Hartogs domain
JO - Annales Polonici Mathematici
PY - 1991
VL - 55
IS - 1
SP - 287
EP - 300
AB - We apply the Rudin idea to represent the Bergman kernel of the Hartogs domain as the sum of a series of weighted Bergman functions in the study of the dependence of this kernel on deformations of the domain. We prove that the Bergman function depends smoothly on the function defining the Hartogs domain.
LA - eng
KW - Hartogs domain; Bergman kernel function
UR - http://eudml.org/doc/262271
ER -
References
top- [1] J. Burbea and P. Masani, Banach and Hilbert Spaces of Vector-Valued Functions, Res. Notes Math. 90, Pitman, Boston 1984. Zbl0555.46012
- [2] F. Forelli and W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974), 593-602. Zbl0297.47041
- [3] R. E. Greene and S. G. Krantz, Stability of the Bergman kernel and curvature properties of bounded domains, in: Recent Developments in Several Complex Variables, J. Fornaess (ed.), Ann. of Math. Stud. 100, Princeton Univ. Press, Princeton, N.J., 1981. Zbl0483.32014
- [4] R. E. Greene and S. G. Krantz, Deformation of complex structures, estimates for the ∂̅ equation, and stability of the Bergman kernel, Adv. in Math. 43 (1982), 1-86. Zbl0504.32016
- [5] S. G. Krantz, Function Theory of Several Complex Variables, Interscience-Wiley, New York 1982. Zbl0471.32008
- [6] E. Ligocka, The regularity of the weighted Bergman projection, in: Seminar of Deformation Theory 1982/84, Lecture Notes in Math. 1165, Springer, 1985, 197-203.
- [7] E. Ligocka, On the Forelli-Rudin construction and weighted Bergman projections, Studia Math. 94 (1989), 257-272. Zbl0688.32020
- [8] K. Maurin, Analysis, Part 1, Elements, PWN-Reidel, Warszawa-Dordrecht 1976.
- [9] K. Maurin, Analysis, Part 2, Integration, Distributions, Holomorphic Functions, Tensor and Harmonic Analysis, PWN-Reidel, Warszawa-Dordrecht 1980.
- [10] T. Mazur, On the complex manifolds of Bergman type, to appear. Zbl1064.32500
- [11] Z. Pasternak-Winiarski, On the dependence of the reproducing kernel on the weight of integration, J. Funct. Anal. 94 (1990), 110-134. Zbl0739.46010
- [12] Z. Pasternak-Winiarski, On weights which admit the reproducing kernel of Bergman type, Internat. J. Math. and Math. Sci., to appear. Zbl0749.32019
- [13] W. Rudin, Function Theory in the Unit Ball in , Springer, Berlin 1980. Zbl0495.32001
- [14] B. V. Shabat, Introduction to Complex Analysis, 3rd ed., Nauka, Moscow 1985 (in Russian). Zbl0574.30001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.