Decomposition and disintegration of positive definite kernels on convex *-semigroups

Jan Stochel

Annales Polonici Mathematici (1992)

  • Volume: 56, Issue: 3, page 243-294
  • ISSN: 0066-2216

Abstract

top
The paper deals with operator-valued positive definite kernels on a convex *-semigroup whose Kolmogorov-Aronszajn type factorizations induce *-semigroups of bounded shift operators. Any such kernel Φ has a canonical decomposition into a degenerate and a nondegenerate part. In case is commutative, Φ can be disintegrated with respect to some tight positive operator-valued measure defined on the characters of if and only if Φ is nondegenerate. It is proved that a representing measure of a positive definite holomorphic mapping on the open unit ball of a commutative Banach *-algebra is supported by the holomorphic characters of . A relationship between positive definiteness and complete positivity is established in the case of commutative W*-algebras.

How to cite

top

Jan Stochel. "Decomposition and disintegration of positive definite kernels on convex *-semigroups." Annales Polonici Mathematici 56.3 (1992): 243-294. <http://eudml.org/doc/262273>.

@article{JanStochel1992,
abstract = {The paper deals with operator-valued positive definite kernels on a convex *-semigroup whose Kolmogorov-Aronszajn type factorizations induce *-semigroups of bounded shift operators. Any such kernel Φ has a canonical decomposition into a degenerate and a nondegenerate part. In case is commutative, Φ can be disintegrated with respect to some tight positive operator-valued measure defined on the characters of if and only if Φ is nondegenerate. It is proved that a representing measure of a positive definite holomorphic mapping on the open unit ball $_•$ of a commutative Banach *-algebra is supported by the holomorphic characters of $_•$. A relationship between positive definiteness and complete positivity is established in the case of commutative W*-algebras.},
author = {Jan Stochel},
journal = {Annales Polonici Mathematici},
keywords = {operator-valued positive definite kernels on a convex -semigroup; Kolmogorov-Aronszajn type factorizations; -semigroups of bounded shift operators; canonical decomposition into a degenerate and a nondegenerate part; representing measure of a positive definite holomorphic mapping; holomorphic characters; complete positivity; commutative -algebras},
language = {eng},
number = {3},
pages = {243-294},
title = {Decomposition and disintegration of positive definite kernels on convex *-semigroups},
url = {http://eudml.org/doc/262273},
volume = {56},
year = {1992},
}

TY - JOUR
AU - Jan Stochel
TI - Decomposition and disintegration of positive definite kernels on convex *-semigroups
JO - Annales Polonici Mathematici
PY - 1992
VL - 56
IS - 3
SP - 243
EP - 294
AB - The paper deals with operator-valued positive definite kernels on a convex *-semigroup whose Kolmogorov-Aronszajn type factorizations induce *-semigroups of bounded shift operators. Any such kernel Φ has a canonical decomposition into a degenerate and a nondegenerate part. In case is commutative, Φ can be disintegrated with respect to some tight positive operator-valued measure defined on the characters of if and only if Φ is nondegenerate. It is proved that a representing measure of a positive definite holomorphic mapping on the open unit ball $_•$ of a commutative Banach *-algebra is supported by the holomorphic characters of $_•$. A relationship between positive definiteness and complete positivity is established in the case of commutative W*-algebras.
LA - eng
KW - operator-valued positive definite kernels on a convex -semigroup; Kolmogorov-Aronszajn type factorizations; -semigroups of bounded shift operators; canonical decomposition into a degenerate and a nondegenerate part; representing measure of a positive definite holomorphic mapping; holomorphic characters; complete positivity; commutative -algebras
UR - http://eudml.org/doc/262273
ER -

References

top
  1. [1] T. Ando and M.-D. Choi, Non-linear completely positive maps, in: Aspects of Positivity in Functional Analysis, R. Nagel, U. Schlotterbeck and M. P. H. Wolff (eds.), Elsevier, North-Holland, 1986, 3-13. 
  2. [2] W. B. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), 141-224. 
  3. [3] H. Bauer, Darstellung von Bilinearformen auf Funktionenalgebren durch Integrale, Math. Z. 85 (1964), 107-115. Zbl0126.11905
  4. [4] S. K. Berberian, Notes on Spectral Theory, Van Nostrand, Princeton 1966. Zbl0138.39104
  5. [5] Ch. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups, Springer, Berlin 1984. 
  6. [6] Ch. Berg and P. H. Maserick, Exponentially bounded positive definite functions, Illinois J. Math. 28 (1984), 162-179. Zbl0519.43005
  7. [7] J. Bochnak and J. Siciak, Polynomials and multilinear mappings in topological vector spaces, Studia Math. 39 (1971), 59-76. Zbl0214.37702
  8. [8] J. Bochnak and J. Siciak, Analytic functions in topological vector spaces, Studia Math., 77-112. Zbl0214.37703
  9. [9] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin 1973. Zbl0271.46039
  10. [10] R. S. Bucy and G. Maltese, A representation theorem for positive functionals on involution algebras, Math. Ann. 162 (1966), 364-367. Zbl0132.10804
  11. [11] J. Burbea, Functional Banach spaces of holomorphic functions on Reinhardt domains, Ann. Polon. Math. 49 (1988), 179-208. Zbl0685.46011
  12. [12] S. B. Chae, Holomorphy and Calculus in Normed Spaces, M. Dekker, New York and Basel 1985. Zbl0571.46031
  13. [13] J. Dieudonné, Eléments d'analyse, Tome II, Gauthier-Villars, Paris 1974. 
  14. [14] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann), Gauthier-Villars, Paris 1969. Zbl0175.43801
  15. [15] R. S. Doran and J. Wichmann, Approximate Identities and Factorization in Banach Modules, Lecture Notes in Math. 768, Springer, Berlin 1979. Zbl0418.46039
  16. [16] L. Esterle, Mittag-Leffler methods in the theory of Banach algebras and a new approach to Michael's problem, in: Contemp. Math. 32, F. Greenleaf and D. Gulick (eds.), Amer. Math. Soc., Providence, R.I., 1984, 107-129. Zbl0569.46031
  17. [17] M. Fragoulopoulou, Abstract Bochner-Weil-Raikov theorem in topological algebras, Bull. Austral. Math. Soc. 26 (1982), 39-44. Zbl0512.46047
  18. [18] R. Godement, Sur la théorie des représentations unitaires, Ann. of Math. 53 (1951), 68-124. Zbl0042.34606
  19. [19] A. Guichardet, Symmetric Hilbert Spaces and Related Topics, Lecture Notes in Math. 261, Springer, Berlin 1972. Zbl0265.43008
  20. [20] T. Husain, Multiplicative Functionals on Topological Algebras, Res. Notes in Math. 85, Pitman, Boston 1983. 
  21. [21] J. Kisyński, On the generation of tight measures, Studia Math. 30 (1968), 141-151. Zbl0157.37301
  22. [22] R. J. Lindahl and P. H. Maserick, Positive-definite functions on involution semigroups, Duke Math. J. 38 (1971), 771-782. Zbl0243.43004
  23. [23] P. Masani, Quasi-isometric measures and their applications, Bull. Amer. Math. Soc. 76 (1970), 427-528. Zbl0207.44001
  24. [24] P. Masani, Dilations as propagators of Hilbertian varieties, SIAM J. Math. Anal. 9 (1978), 414-456. Zbl0391.47005
  25. [25] P. Masani, An outline of the spectral theory of propagators, in: Functional Analysis and Approximation, Birkhäuser, Basel 1981, 73-84. 
  26. [26] P. H. Maserick, Spectral theory of operator-valued transformations, J. Math. Anal. Appl. 41 (1973), 497-507. Zbl0252.47023
  27. [27] W. Mlak, Dilations of Hilbert space operators (General theory), Dissertationes Math. (Rozprawy Mat.) 153 (1978). Zbl0411.47004
  28. [28] A. E. Nussbaum, On the integral representation of positive linear functionals, Trans. Amer. Math. Soc. 128 (1967), 460-473. Zbl0153.44601
  29. [29] S. I. Ouzomgi, Factorization and automatic continuity for an algebra of infinitely differentiable functions, J. London Math. Soc. (2) 30 (1984), 265-280. Zbl0584.46037
  30. [30] S. I. Ouzomgi, Factorization and bounded approximate identities for a class of convolution Banach algebras, Glasgow Math. J. 28 (1986), 211-214. Zbl0605.46040
  31. [31] P. Ressel, Positive definite functions on abelian semigroups without zero, in: Studies in Analysis, Adv. in Math. Suppl. Stud. 4, Academic Press, New York 1979, 291-310. 
  32. [32] P. Ressel, Integral representations on convex semigroups, Math. Scand. 61 (1987), 93-111. Zbl0659.43006
  33. [33] W. Rudin, Positive definite sequences and absolutely monotonic functions, Duke Math. J. 26 (1959), 617-622. Zbl0092.28302
  34. [34] W. Rudin, Functional Analysis, McGraw-Hill, New York 1973. 
  35. [35] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York 1974. 
  36. [36] S. Sakai, A characterization of W*-algebras, Pacific J. Math. 6 (1956), 763-773. Zbl0072.12404
  37. [37] S. Sakai, C*-algebras and W*-algebras, Springer, Berlin 1971. 
  38. [38] I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942), 96-108. Zbl0063.06808
  39. [39] Z. Sebestyén, On representability of linear functionals on *-algebras, Period. Math. Hungar. 15 (1984), 233-239. 
  40. [40] Z. Sebestyén, Operator moment theorems for C*-algebras, Acta Math. Hungar. 49 (1987), 65-70. Zbl0634.47014
  41. [41] W. F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216. 
  42. [42] J. Stochel, A note on general operator dilations over *-semigroups, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 149-153. Zbl0473.47027
  43. [43] J. Stochel, Individual boundedness condition for positive definite sesquilinear form valued kernels, Studia Math. 74 (1982), 293-302. Zbl0506.47023
  44. [44] J. Stochel, The Bochner type theorem for *-definite kernels on abelian *-semi- groups without neutral element, in: Operator Theory: Adv. Appl. 11, Birkhäuser, Basel 1983, 345-362. 
  45. [45] J. Stochel, On the Sz.-Nagy boundedness condition on non-abelian involutory semigroups, in: Operator Theory: Adv. Appl. 14, Birkhäuser, Basel 1984, 251-260. 
  46. [46] J. Stochel, Decomposition and integral representation of covariance kernels, Bull. Acad. Polon. Sci. Sér. Sci. Math. 33 (1985), 367-376. Zbl0588.47046
  47. [47] J. Stochel, On the Sz.-Nagy boundedness condition on abelian involution semigroups, Colloq. Math. 54 (1987), 267-271. Zbl0675.47034
  48. [48] J. Stochel, The Fubini theorem for semi-spectral integrals and semi-spectral representations of some families of operators, Univ. Iagel. Acta Math. 26 (1987), 17-27. Zbl0641.46025
  49. [49] J. Stochel, Dilatability of sesquilinear form-valued kernels, Ann. Polon. Math. 48 (1988), 1-29. Zbl0655.47007
  50. [50] J. Stochel, Smooth positive definite functions on some multiplicative semigroups, Rend. Circ. Mat. Palermo 40 (1991), 153-176. Zbl0764.43002
  51. [51] J. Stochel and F. H. Szafraniec, Boundedness of linear and related nonlinear maps. II, Exposition. Math. 2 (1984), 283-287. Zbl0598.47071
  52. [52] F. H. Szafraniec, A general dilation theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 263-267. 
  53. [53] F. H. Szafraniec, Dilations on involution semigroups, Proc. Amer. Math. Soc. 66 (1977), 30-32. Zbl0369.47004
  54. [54] F. H. Szafraniec, Apropos of Professor Masani's talk, in: Lecture Notes in Math. 656, Springer, Berlin 1978, 245-249. 
  55. [55] F. H. Szafraniec, Boundedness of the shift operator related to positive definite forms: An application to moment problems, Ark. Mat. 19 (1981), 251-259. Zbl0504.47030
  56. [56] F. H. Szafraniec, Moments on compact sets, in: Prediction Theory and Harmonic Analysis, V. Mandrekar and H. Salehi (eds.), North-Holland, 1983, 379-385. 
  57. [57] F. H. Szafraniec, The Hadamard product and related dilations, Colloq. Math. 48 (1984), 95-102. Zbl0571.47006
  58. [58] B. Sz.-Nagy, Extensions of linear transformations in Hilbert space which extend beyond this space, Appendix to: F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar, New York 1960. 
  59. [59] D. M. Topping, Lectures on von Neumann Algebras, Van Nostrand Reinhold, London 1971. 

NotesEmbed ?

top

You must be logged in to post comments.