Decomposition and disintegration of positive definite kernels on convex *-semigroups

Jan Stochel

Annales Polonici Mathematici (1992)

  • Volume: 56, Issue: 3, page 243-294
  • ISSN: 0066-2216

Abstract

top
The paper deals with operator-valued positive definite kernels on a convex *-semigroup whose Kolmogorov-Aronszajn type factorizations induce *-semigroups of bounded shift operators. Any such kernel Φ has a canonical decomposition into a degenerate and a nondegenerate part. In case is commutative, Φ can be disintegrated with respect to some tight positive operator-valued measure defined on the characters of if and only if Φ is nondegenerate. It is proved that a representing measure of a positive definite holomorphic mapping on the open unit ball of a commutative Banach *-algebra is supported by the holomorphic characters of . A relationship between positive definiteness and complete positivity is established in the case of commutative W*-algebras.

How to cite

top

Jan Stochel. "Decomposition and disintegration of positive definite kernels on convex *-semigroups." Annales Polonici Mathematici 56.3 (1992): 243-294. <http://eudml.org/doc/262273>.

@article{JanStochel1992,
abstract = {The paper deals with operator-valued positive definite kernels on a convex *-semigroup whose Kolmogorov-Aronszajn type factorizations induce *-semigroups of bounded shift operators. Any such kernel Φ has a canonical decomposition into a degenerate and a nondegenerate part. In case is commutative, Φ can be disintegrated with respect to some tight positive operator-valued measure defined on the characters of if and only if Φ is nondegenerate. It is proved that a representing measure of a positive definite holomorphic mapping on the open unit ball $_•$ of a commutative Banach *-algebra is supported by the holomorphic characters of $_•$. A relationship between positive definiteness and complete positivity is established in the case of commutative W*-algebras.},
author = {Jan Stochel},
journal = {Annales Polonici Mathematici},
keywords = {operator-valued positive definite kernels on a convex -semigroup; Kolmogorov-Aronszajn type factorizations; -semigroups of bounded shift operators; canonical decomposition into a degenerate and a nondegenerate part; representing measure of a positive definite holomorphic mapping; holomorphic characters; complete positivity; commutative -algebras},
language = {eng},
number = {3},
pages = {243-294},
title = {Decomposition and disintegration of positive definite kernels on convex *-semigroups},
url = {http://eudml.org/doc/262273},
volume = {56},
year = {1992},
}

TY - JOUR
AU - Jan Stochel
TI - Decomposition and disintegration of positive definite kernels on convex *-semigroups
JO - Annales Polonici Mathematici
PY - 1992
VL - 56
IS - 3
SP - 243
EP - 294
AB - The paper deals with operator-valued positive definite kernels on a convex *-semigroup whose Kolmogorov-Aronszajn type factorizations induce *-semigroups of bounded shift operators. Any such kernel Φ has a canonical decomposition into a degenerate and a nondegenerate part. In case is commutative, Φ can be disintegrated with respect to some tight positive operator-valued measure defined on the characters of if and only if Φ is nondegenerate. It is proved that a representing measure of a positive definite holomorphic mapping on the open unit ball $_•$ of a commutative Banach *-algebra is supported by the holomorphic characters of $_•$. A relationship between positive definiteness and complete positivity is established in the case of commutative W*-algebras.
LA - eng
KW - operator-valued positive definite kernels on a convex -semigroup; Kolmogorov-Aronszajn type factorizations; -semigroups of bounded shift operators; canonical decomposition into a degenerate and a nondegenerate part; representing measure of a positive definite holomorphic mapping; holomorphic characters; complete positivity; commutative -algebras
UR - http://eudml.org/doc/262273
ER -

References

top
  1. [1] T. Ando and M.-D. Choi, Non-linear completely positive maps, in: Aspects of Positivity in Functional Analysis, R. Nagel, U. Schlotterbeck and M. P. H. Wolff (eds.), Elsevier, North-Holland, 1986, 3-13. 
  2. [2] W. B. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), 141-224. 
  3. [3] H. Bauer, Darstellung von Bilinearformen auf Funktionenalgebren durch Integrale, Math. Z. 85 (1964), 107-115. Zbl0126.11905
  4. [4] S. K. Berberian, Notes on Spectral Theory, Van Nostrand, Princeton 1966. Zbl0138.39104
  5. [5] Ch. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups, Springer, Berlin 1984. 
  6. [6] Ch. Berg and P. H. Maserick, Exponentially bounded positive definite functions, Illinois J. Math. 28 (1984), 162-179. Zbl0519.43005
  7. [7] J. Bochnak and J. Siciak, Polynomials and multilinear mappings in topological vector spaces, Studia Math. 39 (1971), 59-76. Zbl0214.37702
  8. [8] J. Bochnak and J. Siciak, Analytic functions in topological vector spaces, Studia Math., 77-112. Zbl0214.37703
  9. [9] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin 1973. Zbl0271.46039
  10. [10] R. S. Bucy and G. Maltese, A representation theorem for positive functionals on involution algebras, Math. Ann. 162 (1966), 364-367. Zbl0132.10804
  11. [11] J. Burbea, Functional Banach spaces of holomorphic functions on Reinhardt domains, Ann. Polon. Math. 49 (1988), 179-208. Zbl0685.46011
  12. [12] S. B. Chae, Holomorphy and Calculus in Normed Spaces, M. Dekker, New York and Basel 1985. Zbl0571.46031
  13. [13] J. Dieudonné, Eléments d'analyse, Tome II, Gauthier-Villars, Paris 1974. 
  14. [14] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann), Gauthier-Villars, Paris 1969. Zbl0175.43801
  15. [15] R. S. Doran and J. Wichmann, Approximate Identities and Factorization in Banach Modules, Lecture Notes in Math. 768, Springer, Berlin 1979. Zbl0418.46039
  16. [16] L. Esterle, Mittag-Leffler methods in the theory of Banach algebras and a new approach to Michael's problem, in: Contemp. Math. 32, F. Greenleaf and D. Gulick (eds.), Amer. Math. Soc., Providence, R.I., 1984, 107-129. Zbl0569.46031
  17. [17] M. Fragoulopoulou, Abstract Bochner-Weil-Raikov theorem in topological algebras, Bull. Austral. Math. Soc. 26 (1982), 39-44. Zbl0512.46047
  18. [18] R. Godement, Sur la théorie des représentations unitaires, Ann. of Math. 53 (1951), 68-124. Zbl0042.34606
  19. [19] A. Guichardet, Symmetric Hilbert Spaces and Related Topics, Lecture Notes in Math. 261, Springer, Berlin 1972. Zbl0265.43008
  20. [20] T. Husain, Multiplicative Functionals on Topological Algebras, Res. Notes in Math. 85, Pitman, Boston 1983. 
  21. [21] J. Kisyński, On the generation of tight measures, Studia Math. 30 (1968), 141-151. Zbl0157.37301
  22. [22] R. J. Lindahl and P. H. Maserick, Positive-definite functions on involution semigroups, Duke Math. J. 38 (1971), 771-782. Zbl0243.43004
  23. [23] P. Masani, Quasi-isometric measures and their applications, Bull. Amer. Math. Soc. 76 (1970), 427-528. Zbl0207.44001
  24. [24] P. Masani, Dilations as propagators of Hilbertian varieties, SIAM J. Math. Anal. 9 (1978), 414-456. Zbl0391.47005
  25. [25] P. Masani, An outline of the spectral theory of propagators, in: Functional Analysis and Approximation, Birkhäuser, Basel 1981, 73-84. 
  26. [26] P. H. Maserick, Spectral theory of operator-valued transformations, J. Math. Anal. Appl. 41 (1973), 497-507. Zbl0252.47023
  27. [27] W. Mlak, Dilations of Hilbert space operators (General theory), Dissertationes Math. (Rozprawy Mat.) 153 (1978). Zbl0411.47004
  28. [28] A. E. Nussbaum, On the integral representation of positive linear functionals, Trans. Amer. Math. Soc. 128 (1967), 460-473. Zbl0153.44601
  29. [29] S. I. Ouzomgi, Factorization and automatic continuity for an algebra of infinitely differentiable functions, J. London Math. Soc. (2) 30 (1984), 265-280. Zbl0584.46037
  30. [30] S. I. Ouzomgi, Factorization and bounded approximate identities for a class of convolution Banach algebras, Glasgow Math. J. 28 (1986), 211-214. Zbl0605.46040
  31. [31] P. Ressel, Positive definite functions on abelian semigroups without zero, in: Studies in Analysis, Adv. in Math. Suppl. Stud. 4, Academic Press, New York 1979, 291-310. 
  32. [32] P. Ressel, Integral representations on convex semigroups, Math. Scand. 61 (1987), 93-111. Zbl0659.43006
  33. [33] W. Rudin, Positive definite sequences and absolutely monotonic functions, Duke Math. J. 26 (1959), 617-622. Zbl0092.28302
  34. [34] W. Rudin, Functional Analysis, McGraw-Hill, New York 1973. 
  35. [35] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York 1974. 
  36. [36] S. Sakai, A characterization of W*-algebras, Pacific J. Math. 6 (1956), 763-773. Zbl0072.12404
  37. [37] S. Sakai, C*-algebras and W*-algebras, Springer, Berlin 1971. 
  38. [38] I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942), 96-108. Zbl0063.06808
  39. [39] Z. Sebestyén, On representability of linear functionals on *-algebras, Period. Math. Hungar. 15 (1984), 233-239. 
  40. [40] Z. Sebestyén, Operator moment theorems for C*-algebras, Acta Math. Hungar. 49 (1987), 65-70. Zbl0634.47014
  41. [41] W. F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216. 
  42. [42] J. Stochel, A note on general operator dilations over *-semigroups, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 149-153. Zbl0473.47027
  43. [43] J. Stochel, Individual boundedness condition for positive definite sesquilinear form valued kernels, Studia Math. 74 (1982), 293-302. Zbl0506.47023
  44. [44] J. Stochel, The Bochner type theorem for *-definite kernels on abelian *-semi- groups without neutral element, in: Operator Theory: Adv. Appl. 11, Birkhäuser, Basel 1983, 345-362. 
  45. [45] J. Stochel, On the Sz.-Nagy boundedness condition on non-abelian involutory semigroups, in: Operator Theory: Adv. Appl. 14, Birkhäuser, Basel 1984, 251-260. 
  46. [46] J. Stochel, Decomposition and integral representation of covariance kernels, Bull. Acad. Polon. Sci. Sér. Sci. Math. 33 (1985), 367-376. Zbl0588.47046
  47. [47] J. Stochel, On the Sz.-Nagy boundedness condition on abelian involution semigroups, Colloq. Math. 54 (1987), 267-271. Zbl0675.47034
  48. [48] J. Stochel, The Fubini theorem for semi-spectral integrals and semi-spectral representations of some families of operators, Univ. Iagel. Acta Math. 26 (1987), 17-27. Zbl0641.46025
  49. [49] J. Stochel, Dilatability of sesquilinear form-valued kernels, Ann. Polon. Math. 48 (1988), 1-29. Zbl0655.47007
  50. [50] J. Stochel, Smooth positive definite functions on some multiplicative semigroups, Rend. Circ. Mat. Palermo 40 (1991), 153-176. Zbl0764.43002
  51. [51] J. Stochel and F. H. Szafraniec, Boundedness of linear and related nonlinear maps. II, Exposition. Math. 2 (1984), 283-287. Zbl0598.47071
  52. [52] F. H. Szafraniec, A general dilation theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 263-267. 
  53. [53] F. H. Szafraniec, Dilations on involution semigroups, Proc. Amer. Math. Soc. 66 (1977), 30-32. Zbl0369.47004
  54. [54] F. H. Szafraniec, Apropos of Professor Masani's talk, in: Lecture Notes in Math. 656, Springer, Berlin 1978, 245-249. 
  55. [55] F. H. Szafraniec, Boundedness of the shift operator related to positive definite forms: An application to moment problems, Ark. Mat. 19 (1981), 251-259. Zbl0504.47030
  56. [56] F. H. Szafraniec, Moments on compact sets, in: Prediction Theory and Harmonic Analysis, V. Mandrekar and H. Salehi (eds.), North-Holland, 1983, 379-385. 
  57. [57] F. H. Szafraniec, The Hadamard product and related dilations, Colloq. Math. 48 (1984), 95-102. Zbl0571.47006
  58. [58] B. Sz.-Nagy, Extensions of linear transformations in Hilbert space which extend beyond this space, Appendix to: F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar, New York 1960. 
  59. [59] D. M. Topping, Lectures on von Neumann Algebras, Van Nostrand Reinhold, London 1971. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.