On branches at infinity of a pencil of polynomials in two complex variables

T. Krasiński

Annales Polonici Mathematici (1991)

  • Volume: 55, Issue: 1, page 213-220
  • ISSN: 0066-2216

Abstract

top
Let F ∈ ℂ[x,y]. Some theorems on the dependence of branches at infinity of the pencil of polynomials f(x,y) - λ, λ ∈ ℂ, on the parameter λ are given.

How to cite

top

T. Krasiński. "On branches at infinity of a pencil of polynomials in two complex variables." Annales Polonici Mathematici 55.1 (1991): 213-220. <http://eudml.org/doc/262286>.

@article{T1991,
abstract = {Let F ∈ ℂ[x,y]. Some theorems on the dependence of branches at infinity of the pencil of polynomials f(x,y) - λ, λ ∈ ℂ, on the parameter λ are given.},
author = {T. Krasiński},
journal = {Annales Polonici Mathematici},
keywords = {parametrization; branches at infinity; pencil of polynomials in two complex variables},
language = {eng},
number = {1},
pages = {213-220},
title = {On branches at infinity of a pencil of polynomials in two complex variables},
url = {http://eudml.org/doc/262286},
volume = {55},
year = {1991},
}

TY - JOUR
AU - T. Krasiński
TI - On branches at infinity of a pencil of polynomials in two complex variables
JO - Annales Polonici Mathematici
PY - 1991
VL - 55
IS - 1
SP - 213
EP - 220
AB - Let F ∈ ℂ[x,y]. Some theorems on the dependence of branches at infinity of the pencil of polynomials f(x,y) - λ, λ ∈ ℂ, on the parameter λ are given.
LA - eng
KW - parametrization; branches at infinity; pencil of polynomials in two complex variables
UR - http://eudml.org/doc/262286
ER -

References

top
  1. [1] J. Chądzyński and T. Krasiński, Exponent of growth of polynomial mappings of ℂ² into ℂ, in: Singularities, S. Łojasiewicz (ed.), Banach Center Publ. 20, PWN, Warszawa 1988, 147-160. 
  2. [2] W. Engel, Ein Satz über ganze Cremona-Transformationen der Ebene, Math. Ann. 130 (1955), 11-19. Zbl0065.02603
  3. [3] T. T. Moh, On analytic irreducibility at ∞ of a pencil of curves, Proc. Amer. Math. Soc. 44 (1974), 22-24. Zbl0309.14011
  4. [4] W. Pawłucki, Le théorème de Puiseux pour une application sous-analytique, Bull. Polish Acad. Sci. Math. 32 (1984), 555-560. Zbl0574.32010
  5. [5] S. Saks and A. Zygmund, Analytic Functions, Monograf. Mat. 28, PWN, Warszawa 1965. Zbl0136.37301

NotesEmbed ?

top

You must be logged in to post comments.