On branches at infinity of a pencil of polynomials in two complex variables

T. Krasiński

Annales Polonici Mathematici (1991)

  • Volume: 55, Issue: 1, page 213-220
  • ISSN: 0066-2216

Abstract

top
Let F ∈ ℂ[x,y]. Some theorems on the dependence of branches at infinity of the pencil of polynomials f(x,y) - λ, λ ∈ ℂ, on the parameter λ are given.

How to cite

top

T. Krasiński. "On branches at infinity of a pencil of polynomials in two complex variables." Annales Polonici Mathematici 55.1 (1991): 213-220. <http://eudml.org/doc/262286>.

@article{T1991,
abstract = {Let F ∈ ℂ[x,y]. Some theorems on the dependence of branches at infinity of the pencil of polynomials f(x,y) - λ, λ ∈ ℂ, on the parameter λ are given.},
author = {T. Krasiński},
journal = {Annales Polonici Mathematici},
keywords = {parametrization; branches at infinity; pencil of polynomials in two complex variables},
language = {eng},
number = {1},
pages = {213-220},
title = {On branches at infinity of a pencil of polynomials in two complex variables},
url = {http://eudml.org/doc/262286},
volume = {55},
year = {1991},
}

TY - JOUR
AU - T. Krasiński
TI - On branches at infinity of a pencil of polynomials in two complex variables
JO - Annales Polonici Mathematici
PY - 1991
VL - 55
IS - 1
SP - 213
EP - 220
AB - Let F ∈ ℂ[x,y]. Some theorems on the dependence of branches at infinity of the pencil of polynomials f(x,y) - λ, λ ∈ ℂ, on the parameter λ are given.
LA - eng
KW - parametrization; branches at infinity; pencil of polynomials in two complex variables
UR - http://eudml.org/doc/262286
ER -

References

top
  1. [1] J. Chądzyński and T. Krasiński, Exponent of growth of polynomial mappings of ℂ² into ℂ, in: Singularities, S. Łojasiewicz (ed.), Banach Center Publ. 20, PWN, Warszawa 1988, 147-160. 
  2. [2] W. Engel, Ein Satz über ganze Cremona-Transformationen der Ebene, Math. Ann. 130 (1955), 11-19. Zbl0065.02603
  3. [3] T. T. Moh, On analytic irreducibility at ∞ of a pencil of curves, Proc. Amer. Math. Soc. 44 (1974), 22-24. Zbl0309.14011
  4. [4] W. Pawłucki, Le théorème de Puiseux pour une application sous-analytique, Bull. Polish Acad. Sci. Math. 32 (1984), 555-560. Zbl0574.32010
  5. [5] S. Saks and A. Zygmund, Analytic Functions, Monograf. Mat. 28, PWN, Warszawa 1965. Zbl0136.37301

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.