Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a k-circle

Tetsuo Inoue

Annales Polonici Mathematici (1992)

  • Volume: 56, Issue: 2, page 157-162
  • ISSN: 0066-2216

Abstract

top
Let f(z) be a conformal mapping of an annulus A(R) = 1 < |z| < R and let f(A(R)) be a ring domain bounded by a circle and a k-circle. If R(φ) = w : arg w = φ, and l(φ) - 1 is the linear measure of f(A(R)) ∩ R(φ), then we determine the sharp lower bound of l ( φ 1 ) + l ( φ 2 ) for fixed φ 1 and φ 2 ( 0 φ 1 φ 2 2 π ) .

How to cite

top

Tetsuo Inoue. "Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a k-circle." Annales Polonici Mathematici 56.2 (1992): 157-162. <http://eudml.org/doc/262294>.

@article{TetsuoInoue1992,
abstract = {Let f(z) be a conformal mapping of an annulus A(R) = 1 < |z| < R and let f(A(R)) be a ring domain bounded by a circle and a k-circle. If R(φ) = w : arg w = φ, and l(φ) - 1 is the linear measure of f(A(R)) ∩ R(φ), then we determine the sharp lower bound of $l(φ_1) + l(φ_2)$ for fixed $φ_1$ and $φ_2$$(0 ≤ φ_1 ≤ φ_2 ≤ 2π)$.},
author = {Tetsuo Inoue},
journal = {Annales Polonici Mathematici},
keywords = {Koebe region; chordal cross ratio; -circle},
language = {eng},
number = {2},
pages = {157-162},
title = {Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a k-circle},
url = {http://eudml.org/doc/262294},
volume = {56},
year = {1992},
}

TY - JOUR
AU - Tetsuo Inoue
TI - Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a k-circle
JO - Annales Polonici Mathematici
PY - 1992
VL - 56
IS - 2
SP - 157
EP - 162
AB - Let f(z) be a conformal mapping of an annulus A(R) = 1 < |z| < R and let f(A(R)) be a ring domain bounded by a circle and a k-circle. If R(φ) = w : arg w = φ, and l(φ) - 1 is the linear measure of f(A(R)) ∩ R(φ), then we determine the sharp lower bound of $l(φ_1) + l(φ_2)$ for fixed $φ_1$ and $φ_2$$(0 ≤ φ_1 ≤ φ_2 ≤ 2π)$.
LA - eng
KW - Koebe region; chordal cross ratio; -circle
UR - http://eudml.org/doc/262294
ER -

References

top
  1. [1] L. V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291-301. Zbl0121.06403
  2. [2] D. K. Blevins, Conformal mappings of domains bounded by quasiconformal circles, Duke Math. J. 40 (1973), 877-883. Zbl0275.30015
  3. [3] D. K. Blevins, Harmonic measure and domains bounded by quasiconformal circles, Proc. Amer. Math. Soc. 41 (1973), 559-564. Zbl0281.30015
  4. [4] D. K. Blevins, Covering theorems for univalent functions mapping onto domains bounded by quasiconformal circles, Canad. J. Math. 28 (1976), 627-631. Zbl0362.30013
  5. [5] W. K. Hayman, Multivalent Functions, Cambridge Univ. Press, 1958. 
  6. [6] J. A. Jenkins, Some uniqueness results in the theory of symmetrization, Ann. of Math. 61 (1955), 106-115. Zbl0064.07501
  7. [7] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, second ed., Springer, 1973. Zbl0267.30016
  8. [8] I. P. Mityuk, Principle of symmetrization for the annulus and some of its applications, Sibirsk. Mat. Zh. 6 (1965), 1282-1291 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.