Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a k-circle
Annales Polonici Mathematici (1992)
- Volume: 56, Issue: 2, page 157-162
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291-301. Zbl0121.06403
- [2] D. K. Blevins, Conformal mappings of domains bounded by quasiconformal circles, Duke Math. J. 40 (1973), 877-883. Zbl0275.30015
- [3] D. K. Blevins, Harmonic measure and domains bounded by quasiconformal circles, Proc. Amer. Math. Soc. 41 (1973), 559-564. Zbl0281.30015
- [4] D. K. Blevins, Covering theorems for univalent functions mapping onto domains bounded by quasiconformal circles, Canad. J. Math. 28 (1976), 627-631. Zbl0362.30013
- [5] W. K. Hayman, Multivalent Functions, Cambridge Univ. Press, 1958.
- [6] J. A. Jenkins, Some uniqueness results in the theory of symmetrization, Ann. of Math. 61 (1955), 106-115. Zbl0064.07501
- [7] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, second ed., Springer, 1973. Zbl0267.30016
- [8] I. P. Mityuk, Principle of symmetrization for the annulus and some of its applications, Sibirsk. Mat. Zh. 6 (1965), 1282-1291 (in Russian).