Page 1 Next

Displaying 1 – 20 of 30

Showing per page

Hyperbolically convex functions

Wancang Ma, David Minda (1994)

Annales Polonici Mathematici

We investigate univalent holomorphic functions f defined on the unit disk 𝔻 such that f(𝔻) is a hyperbolically convex subset of 𝔻; there are a number of analogies with the classical theory of (euclidean) convex univalent functions. A subregion Ω of 𝔻 is called hyperbolically convex (relative to hyperbolic geometry on 𝔻) if for all points a,b in Ω the arc of the hyperbolic geodesic in 𝔻 connecting a and b (the arc of the circle joining a and b which is orthogonal to the unit circle) lies in...

On starlikeness of certain integral transforms

S. Ponnusamy (1992)

Annales Polonici Mathematici

Let A denote the class of normalized analytic functions in the unit disc U = z: |z| < 1. The author obtains fixed values of δ and ϱ (δ ≈ 0.308390864..., ϱ ≈ 0.0903572...) such that the integral transforms F and G defined by F ( z ) = 0 z ( f ( t ) / t ) d t and G ( z ) = ( 2 / z ) 0 z g ( t ) d t are starlike (univalent) in U, whenever f ∈ A and g ∈ A satisfy Ref’(z) > -δ and Re g’(z) > -ϱ respectively in U.

On the Residuum of Concave Univalent Functions

Wirths, K.-J. (2006)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 30C25, 30C45.Let D denote the open unit disc and f:D→[`C] be meromorphic and injective in D. We further assume that f has a simple pole at the point p О (0,1) and is normalized by f(0) = 0 and f′(0) = 1. In particular, we are concerned with f that map D onto a domain whose complement with respect to [`C] is convex. Because of the shape of f(D) these functions will be called concave univalent functions with pole p and the family of these functions is denoted...

Currently displaying 1 – 20 of 30

Page 1 Next