The automorphism groups of Zariski open affine subsets of the affine plane
Annales Polonici Mathematici (1994)
- Volume: 60, Issue: 2, page 163-171
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topZbigniew Jelonek. "The automorphism groups of Zariski open affine subsets of the affine plane." Annales Polonici Mathematici 60.2 (1994): 163-171. <http://eudml.org/doc/262297>.
@article{ZbigniewJelonek1994,
abstract = {We study some properties of the affine plane. First we describe the set of fixed points of a polynomial automorphism of ℂ². Next we classify completely so-called identity sets for polynomial automorphisms of ℂ². Finally, we show that a sufficiently general Zariski open affine subset of the affine plane has a finite group of automorphisms.},
author = {Zbigniew Jelonek},
journal = {Annales Polonici Mathematici},
keywords = {polynomial automorphisms; the set of fixed points of a polynomial automorphism; the affine plane; affine plane; polynomial automorphism; fixed points},
language = {eng},
number = {2},
pages = {163-171},
title = {The automorphism groups of Zariski open affine subsets of the affine plane},
url = {http://eudml.org/doc/262297},
volume = {60},
year = {1994},
}
TY - JOUR
AU - Zbigniew Jelonek
TI - The automorphism groups of Zariski open affine subsets of the affine plane
JO - Annales Polonici Mathematici
PY - 1994
VL - 60
IS - 2
SP - 163
EP - 171
AB - We study some properties of the affine plane. First we describe the set of fixed points of a polynomial automorphism of ℂ². Next we classify completely so-called identity sets for polynomial automorphisms of ℂ². Finally, we show that a sufficiently general Zariski open affine subset of the affine plane has a finite group of automorphisms.
LA - eng
KW - polynomial automorphisms; the set of fixed points of a polynomial automorphism; the affine plane; affine plane; polynomial automorphism; fixed points
UR - http://eudml.org/doc/262297
ER -
References
top- [A-M] S. Abhyankar and T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148-166. Zbl0332.14004
- [Iit1] S. Iitaka, On logarithmic Kodaira dimension of algebraic varieties, in: Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, 1977, 178-189.
- [Iit2] S. Iitaka, Birational Geometry for Open Varieties, Les Presses de L'Université de Montréal, 1981.
- [Jel1] Z. Jelonek, Identity sets for polynomial automorphisms, J. Pure Appl. Algebra 76 (1991), 333-339. Zbl0752.14010
- [Jel2] Z. Jelonek, Irreducible identity sets for polynomial automorphisms, Math. Z. 212 (1993), 601-617. Zbl0806.14011
- [Jel3] Z. Jelonek, Affine smooth varieties with finite group of automorphisms, ibid., to appear.
- [Jel4] Z. Jelonek, The extension of regular and rational embeddings, Math. Ann. 277 (1987), 113-120. Zbl0611.14010
- [Jel5] Z. Jelonek, Sets determining polynomial automorphisms of ℂ², Bull. Polish Acad. Sci. Math. 37 (1989), 247-250.
- [Kal] S. Kaliman, Polynomials on ℂ² with isomorphic generic fibers, Soviet Math. Dokl. 33 (1986), 600-603. Zbl0623.14007
- [Kam] T. Kambayashi, Automorphism group of a polynomial ring and algebraic group action on an affine space, J. Algebra 60 (1979), 439-451. Zbl0429.14017
- [Kul] W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wisk. 1 (1953), 33-41. Zbl0050.26002
- [M-W] J. MacKay and S. Wang, An inversion formula for two polynomials in two variables, J. Pure Appl. Algebra 76 (1986), 245-257. Zbl0622.13003
- [Sak] F. Sakai, Kodaira dimension of complements of divisors, in: Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, 1977, 239-257.
- [Suz1] M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace ℂ², J. Math. Soc. Japan 26 (1974), 241-257. Zbl0276.14001
- [Suz2] M. Suzuki, Sur les opérations holomorphes du groupe additif complexe sur l'espace de deux variables complexes, Ann. Sci. Ecole Norm. Sup. 10 (1977), 517-546. Zbl0403.32020
- [Zai] M. G. Zaĭdenberg, Isotrivial families of curves on affine surfaces and characterization of the affine plane, Math. USSR-Izv. 30 (1988), 503-532. Zbl0666.14018
- [Z-L] M. G. Zaĭdenberg and V. Ya. Lin, An irreducible simply connected algebraic curve in ℂ² is equivalent to a quasihomogeneous curve, Soviet Math. Dokl. 28 (1983), 200-203.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.