The automorphism groups of Zariski open affine subsets of the affine plane

Zbigniew Jelonek

Annales Polonici Mathematici (1994)

  • Volume: 60, Issue: 2, page 163-171
  • ISSN: 0066-2216

Abstract

top
We study some properties of the affine plane. First we describe the set of fixed points of a polynomial automorphism of ℂ². Next we classify completely so-called identity sets for polynomial automorphisms of ℂ². Finally, we show that a sufficiently general Zariski open affine subset of the affine plane has a finite group of automorphisms.

How to cite

top

Zbigniew Jelonek. "The automorphism groups of Zariski open affine subsets of the affine plane." Annales Polonici Mathematici 60.2 (1994): 163-171. <http://eudml.org/doc/262297>.

@article{ZbigniewJelonek1994,
abstract = {We study some properties of the affine plane. First we describe the set of fixed points of a polynomial automorphism of ℂ². Next we classify completely so-called identity sets for polynomial automorphisms of ℂ². Finally, we show that a sufficiently general Zariski open affine subset of the affine plane has a finite group of automorphisms.},
author = {Zbigniew Jelonek},
journal = {Annales Polonici Mathematici},
keywords = {polynomial automorphisms; the set of fixed points of a polynomial automorphism; the affine plane; affine plane; polynomial automorphism; fixed points},
language = {eng},
number = {2},
pages = {163-171},
title = {The automorphism groups of Zariski open affine subsets of the affine plane},
url = {http://eudml.org/doc/262297},
volume = {60},
year = {1994},
}

TY - JOUR
AU - Zbigniew Jelonek
TI - The automorphism groups of Zariski open affine subsets of the affine plane
JO - Annales Polonici Mathematici
PY - 1994
VL - 60
IS - 2
SP - 163
EP - 171
AB - We study some properties of the affine plane. First we describe the set of fixed points of a polynomial automorphism of ℂ². Next we classify completely so-called identity sets for polynomial automorphisms of ℂ². Finally, we show that a sufficiently general Zariski open affine subset of the affine plane has a finite group of automorphisms.
LA - eng
KW - polynomial automorphisms; the set of fixed points of a polynomial automorphism; the affine plane; affine plane; polynomial automorphism; fixed points
UR - http://eudml.org/doc/262297
ER -

References

top
  1. [A-M] S. Abhyankar and T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148-166. Zbl0332.14004
  2. [Iit1] S. Iitaka, On logarithmic Kodaira dimension of algebraic varieties, in: Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, 1977, 178-189. 
  3. [Iit2] S. Iitaka, Birational Geometry for Open Varieties, Les Presses de L'Université de Montréal, 1981. 
  4. [Jel1] Z. Jelonek, Identity sets for polynomial automorphisms, J. Pure Appl. Algebra 76 (1991), 333-339. Zbl0752.14010
  5. [Jel2] Z. Jelonek, Irreducible identity sets for polynomial automorphisms, Math. Z. 212 (1993), 601-617. Zbl0806.14011
  6. [Jel3] Z. Jelonek, Affine smooth varieties with finite group of automorphisms, ibid., to appear. 
  7. [Jel4] Z. Jelonek, The extension of regular and rational embeddings, Math. Ann. 277 (1987), 113-120. Zbl0611.14010
  8. [Jel5] Z. Jelonek, Sets determining polynomial automorphisms of ℂ², Bull. Polish Acad. Sci. Math. 37 (1989), 247-250. 
  9. [Kal] S. Kaliman, Polynomials on ℂ² with isomorphic generic fibers, Soviet Math. Dokl. 33 (1986), 600-603. Zbl0623.14007
  10. [Kam] T. Kambayashi, Automorphism group of a polynomial ring and algebraic group action on an affine space, J. Algebra 60 (1979), 439-451. Zbl0429.14017
  11. [Kul] W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wisk. 1 (1953), 33-41. Zbl0050.26002
  12. [M-W] J. MacKay and S. Wang, An inversion formula for two polynomials in two variables, J. Pure Appl. Algebra 76 (1986), 245-257. Zbl0622.13003
  13. [Sak] F. Sakai, Kodaira dimension of complements of divisors, in: Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, 1977, 239-257. 
  14. [Suz1] M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace ℂ², J. Math. Soc. Japan 26 (1974), 241-257. Zbl0276.14001
  15. [Suz2] M. Suzuki, Sur les opérations holomorphes du groupe additif complexe sur l'espace de deux variables complexes, Ann. Sci. Ecole Norm. Sup. 10 (1977), 517-546. Zbl0403.32020
  16. [Zai] M. G. Zaĭdenberg, Isotrivial families of curves on affine surfaces and characterization of the affine plane, Math. USSR-Izv. 30 (1988), 503-532. Zbl0666.14018
  17. [Z-L] M. G. Zaĭdenberg and V. Ya. Lin, An irreducible simply connected algebraic curve in ℂ² is equivalent to a quasihomogeneous curve, Soviet Math. Dokl. 28 (1983), 200-203. 

NotesEmbed ?

top

You must be logged in to post comments.