The automorphism groups of Zariski open affine subsets of the affine plane

Zbigniew Jelonek

Annales Polonici Mathematici (1994)

  • Volume: 60, Issue: 2, page 163-171
  • ISSN: 0066-2216

Abstract

top
We study some properties of the affine plane. First we describe the set of fixed points of a polynomial automorphism of ℂ². Next we classify completely so-called identity sets for polynomial automorphisms of ℂ². Finally, we show that a sufficiently general Zariski open affine subset of the affine plane has a finite group of automorphisms.

How to cite

top

Zbigniew Jelonek. "The automorphism groups of Zariski open affine subsets of the affine plane." Annales Polonici Mathematici 60.2 (1994): 163-171. <http://eudml.org/doc/262297>.

@article{ZbigniewJelonek1994,
abstract = {We study some properties of the affine plane. First we describe the set of fixed points of a polynomial automorphism of ℂ². Next we classify completely so-called identity sets for polynomial automorphisms of ℂ². Finally, we show that a sufficiently general Zariski open affine subset of the affine plane has a finite group of automorphisms.},
author = {Zbigniew Jelonek},
journal = {Annales Polonici Mathematici},
keywords = {polynomial automorphisms; the set of fixed points of a polynomial automorphism; the affine plane; affine plane; polynomial automorphism; fixed points},
language = {eng},
number = {2},
pages = {163-171},
title = {The automorphism groups of Zariski open affine subsets of the affine plane},
url = {http://eudml.org/doc/262297},
volume = {60},
year = {1994},
}

TY - JOUR
AU - Zbigniew Jelonek
TI - The automorphism groups of Zariski open affine subsets of the affine plane
JO - Annales Polonici Mathematici
PY - 1994
VL - 60
IS - 2
SP - 163
EP - 171
AB - We study some properties of the affine plane. First we describe the set of fixed points of a polynomial automorphism of ℂ². Next we classify completely so-called identity sets for polynomial automorphisms of ℂ². Finally, we show that a sufficiently general Zariski open affine subset of the affine plane has a finite group of automorphisms.
LA - eng
KW - polynomial automorphisms; the set of fixed points of a polynomial automorphism; the affine plane; affine plane; polynomial automorphism; fixed points
UR - http://eudml.org/doc/262297
ER -

References

top
  1. [A-M] S. Abhyankar and T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148-166. Zbl0332.14004
  2. [Iit1] S. Iitaka, On logarithmic Kodaira dimension of algebraic varieties, in: Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, 1977, 178-189. 
  3. [Iit2] S. Iitaka, Birational Geometry for Open Varieties, Les Presses de L'Université de Montréal, 1981. 
  4. [Jel1] Z. Jelonek, Identity sets for polynomial automorphisms, J. Pure Appl. Algebra 76 (1991), 333-339. Zbl0752.14010
  5. [Jel2] Z. Jelonek, Irreducible identity sets for polynomial automorphisms, Math. Z. 212 (1993), 601-617. Zbl0806.14011
  6. [Jel3] Z. Jelonek, Affine smooth varieties with finite group of automorphisms, ibid., to appear. 
  7. [Jel4] Z. Jelonek, The extension of regular and rational embeddings, Math. Ann. 277 (1987), 113-120. Zbl0611.14010
  8. [Jel5] Z. Jelonek, Sets determining polynomial automorphisms of ℂ², Bull. Polish Acad. Sci. Math. 37 (1989), 247-250. 
  9. [Kal] S. Kaliman, Polynomials on ℂ² with isomorphic generic fibers, Soviet Math. Dokl. 33 (1986), 600-603. Zbl0623.14007
  10. [Kam] T. Kambayashi, Automorphism group of a polynomial ring and algebraic group action on an affine space, J. Algebra 60 (1979), 439-451. Zbl0429.14017
  11. [Kul] W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wisk. 1 (1953), 33-41. Zbl0050.26002
  12. [M-W] J. MacKay and S. Wang, An inversion formula for two polynomials in two variables, J. Pure Appl. Algebra 76 (1986), 245-257. Zbl0622.13003
  13. [Sak] F. Sakai, Kodaira dimension of complements of divisors, in: Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, 1977, 239-257. 
  14. [Suz1] M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace ℂ², J. Math. Soc. Japan 26 (1974), 241-257. Zbl0276.14001
  15. [Suz2] M. Suzuki, Sur les opérations holomorphes du groupe additif complexe sur l'espace de deux variables complexes, Ann. Sci. Ecole Norm. Sup. 10 (1977), 517-546. Zbl0403.32020
  16. [Zai] M. G. Zaĭdenberg, Isotrivial families of curves on affine surfaces and characterization of the affine plane, Math. USSR-Izv. 30 (1988), 503-532. Zbl0666.14018
  17. [Z-L] M. G. Zaĭdenberg and V. Ya. Lin, An irreducible simply connected algebraic curve in ℂ² is equivalent to a quasihomogeneous curve, Soviet Math. Dokl. 28 (1983), 200-203. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.