A counterexample to a conjecture of Bass, Connell and Wright
Let F=X-H: → be a polynomial map with H homogeneous of degree 3 and nilpotent Jacobian matrix J(H). Let G=(G1,...,Gn) be the formal inverse of F. Bass, Connell and Wright proved in [1] that the homogeneous component of of degree 2d+1 can be expressed as , where T varies over rooted trees with d vertices, α(T)=CardAut(T) and is a polynomial defined by (1) below. The Jacobian Conjecture states that, in our situation, is an automorphism or, equivalently, is zero for sufficiently large d....