On Cauchy-Riemann submanifolds whose local geodesic symmetries preserve the fundamental form

Sorin Dragomir; Mauro Capursi

Annales Polonici Mathematici (1992)

  • Volume: 57, Issue: 2, page 99-103
  • ISSN: 0066-2216

Abstract

top
We classify generic Cauchy-Riemann submanifolds (of a Kaehlerian manifold) whose fundamental form is preserved by any local geodesic symmetry.

How to cite

top

Sorin Dragomir, and Mauro Capursi. "On Cauchy-Riemann submanifolds whose local geodesic symmetries preserve the fundamental form." Annales Polonici Mathematici 57.2 (1992): 99-103. <http://eudml.org/doc/262310>.

@article{SorinDragomir1992,
abstract = {We classify generic Cauchy-Riemann submanifolds (of a Kaehlerian manifold) whose fundamental form is preserved by any local geodesic symmetry.},
author = {Sorin Dragomir, Mauro Capursi},
journal = {Annales Polonici Mathematici},
keywords = {Cauchy-Riemann submanifolds; Riemannian product; totally geodesic complex submanifold; totally real submanifold},
language = {eng},
number = {2},
pages = {99-103},
title = {On Cauchy-Riemann submanifolds whose local geodesic symmetries preserve the fundamental form},
url = {http://eudml.org/doc/262310},
volume = {57},
year = {1992},
}

TY - JOUR
AU - Sorin Dragomir
AU - Mauro Capursi
TI - On Cauchy-Riemann submanifolds whose local geodesic symmetries preserve the fundamental form
JO - Annales Polonici Mathematici
PY - 1992
VL - 57
IS - 2
SP - 99
EP - 103
AB - We classify generic Cauchy-Riemann submanifolds (of a Kaehlerian manifold) whose fundamental form is preserved by any local geodesic symmetry.
LA - eng
KW - Cauchy-Riemann submanifolds; Riemannian product; totally geodesic complex submanifold; totally real submanifold
UR - http://eudml.org/doc/262310
ER -

References

top
  1. [1] B. Y. Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. Reine Agnew. Math. 325 (1981), 28-67. Zbl0503.53013
  2. [2] S. Dragomir, Cauchy-Riemann submanifolds of locally conformal Kaehler manifolds, I, II, Geom. Dedicata 28 (1988), 181-197; Atti Sem. Mat. Fis. Univ. Modena 37 (1989), 1-11. Zbl0659.53041
  3. [3] S. Dragomir, On submanifolds of Hopf manifolds, Israel J. Math. (2) 61 (1988), 199-210. Zbl0649.53031
  4. [4] A. Gray, The volume of a small geodesic ball in a Riemannian manifold, Michigan Math. J. 20 (1973), 329-344. Zbl0279.58003
  5. [5] K. Sekigawa and L. Vanhecke, Symplectic geodesic symmetries on Kaehler manifolds, Quart. J. Math. Oxford Ser. (2) 37 (1986), 95-103. Zbl0589.53068
  6. [6] I. Vaisman, Locally conformal Kähler manifolds with parallel Lee form, Rend. Mat. 12 (1979), 263-284. Zbl0447.53032
  7. [7] K. Yano, On a structure defined by a tensor field of type (1,1) satisfying f³+f=0, Tensor (N.S.) 14 (1963), 99-109. Zbl0122.40705
  8. [8] K. Yano and M. Kon, Generic submanifolds, Ann. Mat. Pura Appl. 123 (1980), 59-92. Zbl0441.53043
  9. [9] K. Yano and M. Kon, Cr Submanifolds of Kaehlerian and Sasakian Manifolds, Progr. Math. 30, Birkhäuser, Boston 1983. Zbl0496.53037

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.