Differential geometry of geodesic spheres.

L. Vanhecke; B.-Y. Chen

Journal für die reine und angewandte Mathematik (1981)

  • Volume: 325, page 28-67
  • ISSN: 0075-4102; 1435-5345/e

How to cite

top

Vanhecke, L., and Chen, B.-Y.. "Differential geometry of geodesic spheres.." Journal für die reine und angewandte Mathematik 325 (1981): 28-67. <http://eudml.org/doc/152356>.

@article{Vanhecke1981,
author = {Vanhecke, L., Chen, B.-Y.},
journal = {Journal für die reine und angewandte Mathematik},
keywords = {power series expansions of geometric quantities; volume; Ricci tensor; geodesic spheres; Laplacian of the mean curvature; distance spheres},
pages = {28-67},
title = {Differential geometry of geodesic spheres.},
url = {http://eudml.org/doc/152356},
volume = {325},
year = {1981},
}

TY - JOUR
AU - Vanhecke, L.
AU - Chen, B.-Y.
TI - Differential geometry of geodesic spheres.
JO - Journal für die reine und angewandte Mathematik
PY - 1981
VL - 325
SP - 28
EP - 67
KW - power series expansions of geometric quantities; volume; Ricci tensor; geodesic spheres; Laplacian of the mean curvature; distance spheres
UR - http://eudml.org/doc/152356
ER -

Citations in EuDML Documents

top
  1. Henry Maillot, Courbures et basculements des sous-variétés riemanniennes
  2. J. González-Dávila, L. Vanhecke, Geodesic spheres and isometric flows
  3. Sorin Dragomir, Mauro Capursi, On Cauchy-Riemann submanifolds whose local geodesic symmetries preserve the fundamental form
  4. Kouei Sekigawa, Lieven Vanhecke, Harmonic maps and s -regular manifolds
  5. J. González-Dávila, L. Vanhecke, Invariants and flow geometry
  6. J. Gillard, Characterizations of complex space forms by means of geodesic spheres and tubes
  7. Eric Boeckx, José Carmelo González-Dávila, Lieven Vanhecke, Stability of the geodesic flow for the energy
  8. Eric Boeckx, Lieven Vanhecke, Unit tangent sphere bundles with constant scalar curvature
  9. Oldřich Kowalski, Lieven Vanhecke, The volume of geodesic disks in a Riemannian manifold
  10. Vicente Miquel, Vicente Palmer, Mean curvature comparison for tubular hypersurfaces in Kähler manifolds and some applications

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.