Differential geometry of geodesic spheres.
Journal für die reine und angewandte Mathematik (1981)
- Volume: 325, page 28-67
- ISSN: 0075-4102; 1435-5345/e
Access Full Article
topHow to cite
topVanhecke, L., and Chen, B.-Y.. "Differential geometry of geodesic spheres.." Journal für die reine und angewandte Mathematik 325 (1981): 28-67. <http://eudml.org/doc/152356>.
@article{Vanhecke1981,
author = {Vanhecke, L., Chen, B.-Y.},
journal = {Journal für die reine und angewandte Mathematik},
keywords = {power series expansions of geometric quantities; volume; Ricci tensor; geodesic spheres; Laplacian of the mean curvature; distance spheres},
pages = {28-67},
title = {Differential geometry of geodesic spheres.},
url = {http://eudml.org/doc/152356},
volume = {325},
year = {1981},
}
TY - JOUR
AU - Vanhecke, L.
AU - Chen, B.-Y.
TI - Differential geometry of geodesic spheres.
JO - Journal für die reine und angewandte Mathematik
PY - 1981
VL - 325
SP - 28
EP - 67
KW - power series expansions of geometric quantities; volume; Ricci tensor; geodesic spheres; Laplacian of the mean curvature; distance spheres
UR - http://eudml.org/doc/152356
ER -
Citations in EuDML Documents
top- Henry Maillot, Courbures et basculements des sous-variétés riemanniennes
- J. González-Dávila, L. Vanhecke, Geodesic spheres and isometric flows
- Sorin Dragomir, Mauro Capursi, On Cauchy-Riemann submanifolds whose local geodesic symmetries preserve the fundamental form
- Kouei Sekigawa, Lieven Vanhecke, Harmonic maps and -regular manifolds
- J. González-Dávila, L. Vanhecke, Invariants and flow geometry
- J. Gillard, Characterizations of complex space forms by means of geodesic spheres and tubes
- Eric Boeckx, José Carmelo González-Dávila, Lieven Vanhecke, Stability of the geodesic flow for the energy
- Eric Boeckx, Lieven Vanhecke, Unit tangent sphere bundles with constant scalar curvature
- Oldřich Kowalski, Lieven Vanhecke, The volume of geodesic disks in a Riemannian manifold
- Vicente Miquel, Vicente Palmer, Mean curvature comparison for tubular hypersurfaces in Kähler manifolds and some applications
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.