Generic properties of generalized hyperbolic partial differential equations

Dariusz Bielawski

Annales Polonici Mathematici (1994)

  • Volume: 59, Issue: 2, page 107-115
  • ISSN: 0066-2216

Abstract

top
The existence and uniqueness of solutions and convergence of successive approximations are considered as generic properties for generalized hyperbolic partial differential equations with unbounded right-hand sides.

How to cite

top

Dariusz Bielawski. "Generic properties of generalized hyperbolic partial differential equations." Annales Polonici Mathematici 59.2 (1994): 107-115. <http://eudml.org/doc/262325>.

@article{DariuszBielawski1994,
abstract = {The existence and uniqueness of solutions and convergence of successive approximations are considered as generic properties for generalized hyperbolic partial differential equations with unbounded right-hand sides.},
author = {Dariusz Bielawski},
journal = {Annales Polonici Mathematici},
keywords = {Darboux problem; generic property; existence and uniqueness of solutions; Bielecki's norms; generic properties},
language = {eng},
number = {2},
pages = {107-115},
title = {Generic properties of generalized hyperbolic partial differential equations},
url = {http://eudml.org/doc/262325},
volume = {59},
year = {1994},
}

TY - JOUR
AU - Dariusz Bielawski
TI - Generic properties of generalized hyperbolic partial differential equations
JO - Annales Polonici Mathematici
PY - 1994
VL - 59
IS - 2
SP - 107
EP - 115
AB - The existence and uniqueness of solutions and convergence of successive approximations are considered as generic properties for generalized hyperbolic partial differential equations with unbounded right-hand sides.
LA - eng
KW - Darboux problem; generic property; existence and uniqueness of solutions; Bielecki's norms; generic properties
UR - http://eudml.org/doc/262325
ER -

References

top
  1. [1] A. Alexiewicz and W. Orlicz, Some remarks on the existence and uniqueness of solutions of hyperbolic equations z x y = f ( x , y , z , z x , z y ) , Studia Math. 15 (1956), 201-215. Zbl0070.09204
  2. [2] A. Bielecki, Une remarque sur l'application de la méthode de Banach-Caccioppoli-Tikhonov dans la théorie de l'équation s = f(x,y,z,p,q), Bull. Acad. Polon. Sci. Cl. III 4 (1956), 265-268. Zbl0070.09004
  3. [3] T. Costello, Generic properties of differential equations, SIAM J. Math. Anal. 4 (1973), 245-249. Zbl0225.35064
  4. [4] G. Darbo, Punti uniti in transformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92. Zbl0064.35704
  5. [5] F. S. De Blasi and J. Myjak, Generic properties of hyperbolic partial differential equations, J. London Math. Soc. (2) 15 (1977), 113-118. Zbl0353.35064
  6. [6] K. Goebel, Thickness of sets in metric spaces and its application in fixed point theory, habilitation thesis, Lublin, 1970 (in Polish). 
  7. [7] P. Hartman and A. Wintner, On hyperbolic partial differential equations, Amer. J. Math., 74 (1952), 834-864. Zbl0048.33302
  8. [8] A. Lasota and J. Yorke, The generic property of existence of solutions of differential equations in Banach space, J. Differential Equations 13 (1973), 1-12. Zbl0259.34070

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.