On the solvability of nonlinear elliptic equations in Sobolev spaces

Piotr Fijałkowski

Annales Polonici Mathematici (1992)

  • Volume: 56, Issue: 2, page 149-156
  • ISSN: 0066-2216

Abstract

top
We consider the existence of solutions of the system (*) P ( D ) u l = F ( x , ( α u ) ) , l = 1,...,k, x n ( u = ( u ¹ , . . . , u k ) ) in Sobolev spaces, where P is a positive elliptic polynomial and F is nonlinear.

How to cite

top

Piotr Fijałkowski. "On the solvability of nonlinear elliptic equations in Sobolev spaces." Annales Polonici Mathematici 56.2 (1992): 149-156. <http://eudml.org/doc/262349>.

@article{PiotrFijałkowski1992,
abstract = {We consider the existence of solutions of the system (*) $P(D)u^l = F(x,(∂^α u))$, l = 1,...,k, $x ∈ ℝ^n$$(u=(u¹,...,u^k))$ in Sobolev spaces, where P is a positive elliptic polynomial and F is nonlinear.},
author = {Piotr Fijałkowski},
journal = {Annales Polonici Mathematici},
keywords = {nonlinear elliptic equations; existence; Sobolev spaces},
language = {eng},
number = {2},
pages = {149-156},
title = {On the solvability of nonlinear elliptic equations in Sobolev spaces},
url = {http://eudml.org/doc/262349},
volume = {56},
year = {1992},
}

TY - JOUR
AU - Piotr Fijałkowski
TI - On the solvability of nonlinear elliptic equations in Sobolev spaces
JO - Annales Polonici Mathematici
PY - 1992
VL - 56
IS - 2
SP - 149
EP - 156
AB - We consider the existence of solutions of the system (*) $P(D)u^l = F(x,(∂^α u))$, l = 1,...,k, $x ∈ ℝ^n$$(u=(u¹,...,u^k))$ in Sobolev spaces, where P is a positive elliptic polynomial and F is nonlinear.
LA - eng
KW - nonlinear elliptic equations; existence; Sobolev spaces
UR - http://eudml.org/doc/262349
ER -

References

top
  1. [1] S. N. Bernstein, Sur les équations du calcul des variations, Ann. Sci. École Norm. Sup. 29 (1912), 431-485. Zbl43.0460.01
  2. [2] F. E. Browder, Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type, in: Contributions to Nonlinear Functional Analysis, E. H. Zarantonello (ed.), Academic Press, New York 1971, 425-500. 
  3. [3] P. Fijałkowski, On the equation x''(t) = F(t,x(t)) in the Sobolev space H¹(ℝ), Ann. Polon. Math. 53 (1991), 29-34. Zbl0739.34004
  4. [4] A. Granas, R. Guenther and J. Lee, Nonlinear boundary value problems for ordinary differential equations, Dissertationes Math. 244 (1985). Zbl0615.34010
  5. [5] L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer, Berlin 1983. Zbl0521.35002
  6. [6] M. A. Krasnosel'skiĭ, P. P. Zabreĭko, E. I. Pustyl'nik and P. E. Sobolevskiĭ, Integral Operators in Spaces of Summable Functions, Nauka, Moscow 1966 (in Russian). 
  7. [7] N. G. Lloyd, Degree Theory, Cambridge Univ. Press, 1978. 
  8. [8] B. Przeradzki, On the solvability of singular BVPs for second-order ordinary differential equations, Ann. Polon. Math. 50 (1990), 279-289. Zbl0701.34006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.