Nonlinear boundary value problems for ordinary differential equations

Andrzej Granas; Ronald Guenther; John Lee

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1985

Abstract

top
CommentsThis tract is intended to be accessible to a broad spectrum of readers. Those with out much previous experience with differential equations might find it profitable (when the need arises) to consult one of the following standard texts: Coddington-Levinson [17], Hale [35], Hartman [38], Mawhin-Rouche [61]. The bibliography given below is restricted mostly to the problems discussed in the tract or closely related topics. A small number of additional references are included however in order to provide a guide to further study; most of these contain extensive bibliographies for the material they cover. The following references include some of the recent surveys and monographs that are related to the subject matter of this tract in a substantial way: Bailey-Shampine-Waltman [7], Bernfeld-Lakshmikantahm [11], Cesari [15], Eloe-Henderson [21], Gaines-Mawhin [25], Gudkov-Klokow-Lepin-Ponomarov [34], Jackson [43], Keller [47], Lefschetz [57], Mawhin [60], Protter-Weinberger [69].CONTENTSComments............................................................................................................................5CHAPTER IIntroduction§ 1. Elementary theory of second order differential equations...........................................12§ 2. Topological preliminaries.............................................................................................14§ 3. The maximum principle................................................................................................16§ 4. Existence and a priori bounds-examples.....................................................................19§ 5. Problems with other boundary conditions....................................................................25CHAPTER IIThe Bernstein theory of the equation y" = f(t, y, y')§ 1. The homogeneous Dirichlet, Neumann, and periodic problems...................................28§ 2. The homogeneous Sturm-Liouville problem................................................................34§ 3. Inhomogeneous boundary conditions..........................................................................35§ 4. Examples and remarks................................................................................................39§ 5. Bernstein-Nagumo growth conditions..........................................................................44§ 6. Nonlinear boundary conditions....................................................................................50§ 7. Uniqueness..................................................................................................................52CHAPTER IIIApplications§ 1. Steady-state temperature distributions........................................................................56§ 2. The Thomas-Fermi problem........................................................................................59§ 3. Singular boundary value problems..............................................................................62§ 4. Osmotic flow.................................................................................................................64§ 5. Positive solutions to diffusion equations......................................................................70CHAPTER IVOther second order boundary value problems§ 1. Periodic solutions to differential equations of Nirenberg type......................................76§ 2. The Dirichlet problem for y" = f(y') and the Neumann problem for y" = f(t,y,y').............85§ 3. Upper and lower solutions...........................................................................................94CHAPTER VEven order systems and higher order equations§ 1. General existence theorems........................................................................................99§ 2. Second order systems...............................................................................................102§ 3. Third and fourth order problems................................................................................108§ 4. Higher even order equations......................................................................................111CHAPTER VINumerical solution of boundary value problems§ 1. Newton’s method........................................................................................................113§ 2. The shooting method for the Dirichlet problem..........................................................115§ 3. The shooting method for the Neumann problem........................................................120§ 4. Quasilinearization for boundary value problems........................................................121References.......................................................................................................................125

How to cite

top

Andrzej Granas, Ronald Guenther, and John Lee. Nonlinear boundary value problems for ordinary differential equations. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1985. <http://eudml.org/doc/268365>.

@book{AndrzejGranas1985,
abstract = {CommentsThis tract is intended to be accessible to a broad spectrum of readers. Those with out much previous experience with differential equations might find it profitable (when the need arises) to consult one of the following standard texts: Coddington-Levinson [17], Hale [35], Hartman [38], Mawhin-Rouche [61]. The bibliography given below is restricted mostly to the problems discussed in the tract or closely related topics. A small number of additional references are included however in order to provide a guide to further study; most of these contain extensive bibliographies for the material they cover. The following references include some of the recent surveys and monographs that are related to the subject matter of this tract in a substantial way: Bailey-Shampine-Waltman [7], Bernfeld-Lakshmikantahm [11], Cesari [15], Eloe-Henderson [21], Gaines-Mawhin [25], Gudkov-Klokow-Lepin-Ponomarov [34], Jackson [43], Keller [47], Lefschetz [57], Mawhin [60], Protter-Weinberger [69].CONTENTSComments............................................................................................................................5CHAPTER IIntroduction§ 1. Elementary theory of second order differential equations...........................................12§ 2. Topological preliminaries.............................................................................................14§ 3. The maximum principle................................................................................................16§ 4. Existence and a priori bounds-examples.....................................................................19§ 5. Problems with other boundary conditions....................................................................25CHAPTER IIThe Bernstein theory of the equation y" = f(t, y, y')§ 1. The homogeneous Dirichlet, Neumann, and periodic problems...................................28§ 2. The homogeneous Sturm-Liouville problem................................................................34§ 3. Inhomogeneous boundary conditions..........................................................................35§ 4. Examples and remarks................................................................................................39§ 5. Bernstein-Nagumo growth conditions..........................................................................44§ 6. Nonlinear boundary conditions....................................................................................50§ 7. Uniqueness..................................................................................................................52CHAPTER IIIApplications§ 1. Steady-state temperature distributions........................................................................56§ 2. The Thomas-Fermi problem........................................................................................59§ 3. Singular boundary value problems..............................................................................62§ 4. Osmotic flow.................................................................................................................64§ 5. Positive solutions to diffusion equations......................................................................70CHAPTER IVOther second order boundary value problems§ 1. Periodic solutions to differential equations of Nirenberg type......................................76§ 2. The Dirichlet problem for y" = f(y') and the Neumann problem for y" = f(t,y,y').............85§ 3. Upper and lower solutions...........................................................................................94CHAPTER VEven order systems and higher order equations§ 1. General existence theorems........................................................................................99§ 2. Second order systems...............................................................................................102§ 3. Third and fourth order problems................................................................................108§ 4. Higher even order equations......................................................................................111CHAPTER VINumerical solution of boundary value problems§ 1. Newton’s method........................................................................................................113§ 2. The shooting method for the Dirichlet problem..........................................................115§ 3. The shooting method for the Neumann problem........................................................120§ 4. Quasilinearization for boundary value problems........................................................121References.......................................................................................................................125},
author = {Andrzej Granas, Ronald Guenther, John Lee},
keywords = {upper solutions; second order differential equation; Dirichlet condition; Neumann condition; uniqueness problems; Sturm-Liouville conditions; lower solutions},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Nonlinear boundary value problems for ordinary differential equations},
url = {http://eudml.org/doc/268365},
year = {1985},
}

TY - BOOK
AU - Andrzej Granas
AU - Ronald Guenther
AU - John Lee
TI - Nonlinear boundary value problems for ordinary differential equations
PY - 1985
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CommentsThis tract is intended to be accessible to a broad spectrum of readers. Those with out much previous experience with differential equations might find it profitable (when the need arises) to consult one of the following standard texts: Coddington-Levinson [17], Hale [35], Hartman [38], Mawhin-Rouche [61]. The bibliography given below is restricted mostly to the problems discussed in the tract or closely related topics. A small number of additional references are included however in order to provide a guide to further study; most of these contain extensive bibliographies for the material they cover. The following references include some of the recent surveys and monographs that are related to the subject matter of this tract in a substantial way: Bailey-Shampine-Waltman [7], Bernfeld-Lakshmikantahm [11], Cesari [15], Eloe-Henderson [21], Gaines-Mawhin [25], Gudkov-Klokow-Lepin-Ponomarov [34], Jackson [43], Keller [47], Lefschetz [57], Mawhin [60], Protter-Weinberger [69].CONTENTSComments............................................................................................................................5CHAPTER IIntroduction§ 1. Elementary theory of second order differential equations...........................................12§ 2. Topological preliminaries.............................................................................................14§ 3. The maximum principle................................................................................................16§ 4. Existence and a priori bounds-examples.....................................................................19§ 5. Problems with other boundary conditions....................................................................25CHAPTER IIThe Bernstein theory of the equation y" = f(t, y, y')§ 1. The homogeneous Dirichlet, Neumann, and periodic problems...................................28§ 2. The homogeneous Sturm-Liouville problem................................................................34§ 3. Inhomogeneous boundary conditions..........................................................................35§ 4. Examples and remarks................................................................................................39§ 5. Bernstein-Nagumo growth conditions..........................................................................44§ 6. Nonlinear boundary conditions....................................................................................50§ 7. Uniqueness..................................................................................................................52CHAPTER IIIApplications§ 1. Steady-state temperature distributions........................................................................56§ 2. The Thomas-Fermi problem........................................................................................59§ 3. Singular boundary value problems..............................................................................62§ 4. Osmotic flow.................................................................................................................64§ 5. Positive solutions to diffusion equations......................................................................70CHAPTER IVOther second order boundary value problems§ 1. Periodic solutions to differential equations of Nirenberg type......................................76§ 2. The Dirichlet problem for y" = f(y') and the Neumann problem for y" = f(t,y,y').............85§ 3. Upper and lower solutions...........................................................................................94CHAPTER VEven order systems and higher order equations§ 1. General existence theorems........................................................................................99§ 2. Second order systems...............................................................................................102§ 3. Third and fourth order problems................................................................................108§ 4. Higher even order equations......................................................................................111CHAPTER VINumerical solution of boundary value problems§ 1. Newton’s method........................................................................................................113§ 2. The shooting method for the Dirichlet problem..........................................................115§ 3. The shooting method for the Neumann problem........................................................120§ 4. Quasilinearization for boundary value problems........................................................121References.......................................................................................................................125
LA - eng
KW - upper solutions; second order differential equation; Dirichlet condition; Neumann condition; uniqueness problems; Sturm-Liouville conditions; lower solutions
UR - http://eudml.org/doc/268365
ER -

Citations in EuDML Documents

top
  1. Jacek Gulgowski, Approximation of solutions to second order nonlinear Picard problems with Carathéodory right-hand side
  2. D. O'Regan, Solvability of some singular and nonsingular nonlinear third order boundary value problems
  3. Jan Ligęza, On two-points boundary value problems for ordinary nonlinear differential equations of the fourth order in the Colombeau algebra
  4. Piotr Fijałkowski, On equation P ( D ) u = f ( u ( m ) ) + g t , ( u ( j ) ) on the line
  5. Zdzisław Dzedzej, Equivariant degree of convex-valued maps applied to set-valued BVP
  6. Piotr Fijałkowski, On a class of nonlinear ellipticequations in Hilbert spaces
  7. Piotr Fijałkowski, On the solvability of nonlinear elliptic equations in Sobolev spaces
  8. Pavel Calábek, A four-point problem for second-order differential systems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.